The primary goals of the Molecular Therapeutics (MT) Program are to study and evaluate cancer targets, develop novel chemical probes that will lead to new therapies, and devise more effective delivery systems to treat cancer. MT has highly integrated basic science and translational themes in five areas: chemical and structural biology; drug discovery and development; drug delivery and nanotechnology; systems pharmacology; and oncogenic signaling. MTs objective is to combine these elements to develop novel therapeutics and to translate innovative discoveries into applications relevant to LCCC-initiated human trials. Interactions of MT?s members with LCCC basic, translational and clinical faculty enables many of the scientific steps needed for the discovery and development of promising therapies. This includes: (1) Discovery and validation of new targets for cancer therapies, (2) Development of chemical probes to modulate and further validate identified targets, (3) Development of faithful animal cancer models for the testing of novel therapeutics, (4) Discovery and application of novel surface chemistry and nanoparticle synthesis for delivery and formulation of promising therapeutics, (5) Characterization of PK/PD of novel therapeutics involving preclinical models and patient clinical trials. The focused development of MT during the past five years provides the requisite infrastructure and knowledge-base to truly do drug discovery in an academic setting. A major strength of the program has been the enhancement of chemical biology that has benefited virtually everyone involved in cancer research at UNC and in the Cancer Center. Examples of this success are represented by LCCC investigator lead startups developing clinical-candidate MER inhibitors with potent anti- tumor activity entering phase 1 trials, and the discovery of pharmacological quiescence where a lead compound will begin Phase II testing in small cell lung cancer in early 2015. Leadership for Molecular Therapeutics is provided by Stephen Frye, Director of the Center for Integrative Chemical Biology and Drug Discovery (CICBDD) and Fred Eshelman Distinguished Professor in the UNC School of Pharmacy and Gary Johnson, the Kenan Distinguished Professor and Chair of the Department of Pharmacology in the School of Medicine. The program fosters a strong integrated research effort through the establishment, use and advancement of core facilities and promoting highly interactive collaborations with Cancer Center investigators. The Molecular Therapeutics Program consists of 42 members associated with the Schools of Medicine, Pharmacy and Arts & Sciences. During the last funding period, program members have published 700 cancer- related articles (30% collaborative). In 2014, our program members held 89 grants and $22M (total cost) in annual extramural funding, including 36 grants and $8.8M (total costs) from the NCI.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-44
Application #
9834873
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
44
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Westmoreland, Katherine D; El-Mallawany, Nader K; Kazembe, Peter et al. (2018) Dissecting heterogeneous outcomes for paediatric Burkitt lymphoma in Malawi after anthracycline-based treatment. Br J Haematol 181:853-854
Kulis, Michael; Yue, Xiaohong; Guo, Rishu et al. (2018) High- and low-dose oral immunotherapy similarly suppress pro-allergic cytokines and basophil activation in young children. Clin Exp Allergy :
Malta, Tathiane M; Sokolov, Artem; Gentles, Andrew J et al. (2018) Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell 173:338-354.e15
Lund, Jennifer L; Sanoff, Hanna K; Peacock Hinton, Sharon et al. (2018) Potential Medication-Related Problems in Older Breast, Colon, and Lung Cancer Patients in the United States. Cancer Epidemiol Biomarkers Prev 27:41-49
Smith, Jennifer S; Des Marais, Andrea C; Deal, Allison M et al. (2018) Mailed Human Papillomavirus Self-Collection With Papanicolaou Test Referral for Infrequently Screened Women in the United States. Sex Transm Dis 45:42-48
Morris, Michael J; Rumble, R Bryan; Basch, Ethan et al. (2018) Optimizing Anticancer Therapy in Metastatic Non-Castrate Prostate Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 36:1521-1539
Hisada, Yohei; Thålin, Charlotte; Lundström, Staffan et al. (2018) Comparison of microvesicle tissue factor activity in non-cancer severely ill patients and cancer patients. Thromb Res 165:1-5
Gomih, Ayodele; Smith, Jennifer S; North, Kari E et al. (2018) DNA methylation of imprinted gene control regions in the regression of low-grade cervical lesions. Int J Cancer 143:552-560
Wheeler, Stephanie B; Spencer, Jennifer C; Pinheiro, Laura C et al. (2018) Financial Impact of Breast Cancer in Black Versus White Women. J Clin Oncol 36:1695-1701
Knott, Simon R V; Wagenblast, Elvin; Khan, Showkhin et al. (2018) Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554:378-381

Showing the most recent 10 out of 1525 publications