MOLECULAR THERAPEUTICS PROGRAM The Molecular Therapeutics (MT) program is dedicated to evaluating cancer targets, developing novel therapies, and devising more effective delivery systems via highly integrated basic science and translational activities. The Program is led by Stephen Frye, Director of the Center for Integrative Chemical Biology and Drug Discovery (CICBDD) and Fred Eshelman Distinguished Professor, and Gary Johnson, Kenan Distinguished Professor in the Department of Pharmacology. The MT Program consists of 42 members who are associated with four schools and 16 departments. During the last funding period, program members have published 675 cancer-related articles. MT is highly collaborative. 16% of these papers are intra-programmatic and 33% are inter-programmatic (43% collaborative). In 2019, our program members held grants totaling $20.9M (direct cost) in cancer-relevant extramural funding, including $6.4M (direct costs) from the NCI and $13.0M other peer funding. The MT program is comprised of investigators with expertise in five broad areas: Chemical and Structural Biology; Drug Discovery and Development; Drug Delivery and Nanotechnology; Systems Pharmacology; and Oncogenic Signaling. Many investigators in the program have active collaborations with other LCCC programs, using and providing direction for LCCC's shared resources. These interactions enable many of the scientific steps needed for the discovery and development of promising therapies. In 2015, MT was rated ?outstanding? stating ?the minor weakness of this program is that, relatively few of the promising therapeutics have moved into investigator initiated clinical trials at the LCCC.? Since this review, multiple clinical studies have been initiated at UNC and other institutions based on discoveries in MT, as outlined in our response to the prior critique. Future plans build on unique translational resources available due to the creation of the Eshelman Institute for Innovation and Pinnacle Hill, which bring more than $100 million to progress UNC-based discoveries into patients. Cellular and biologic therapies will be an area of future focus for MT members enabled by the expansion of the Clinical Immunotherapy Program's GMP facility. Through these efforts, MT will continue to accelerate discovery of new cancer therapeutics and, with the Clinical Research and Breast Cancer Programs, design and execute translational and therapeutic trials in our patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016086-45
Application #
10089813
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-06-01
Project End
2025-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Suzuki, Aussie; Long, Sarah K; Salmon, Edward D (2018) An optimized method for 3D fluorescence co-localization applied to human kinetochore protein architecture. Elife 7:
Mohan, Vishwa; Sullivan, Chelsea S; Guo, Jiami et al. (2018) Temporal Regulation of Dendritic Spines Through NrCAM-Semaphorin3F Receptor Signaling in Developing Cortical Pyramidal Neurons. Cereb Cortex :
Haase, Karen P; Fox, Jaime C; Byrnes, Amy E et al. (2018) Stu2 uses a 15-nm parallel coiled coil for kinetochore localization and concomitant regulation of the mitotic spindle. Mol Biol Cell 29:285-294
Nicholls, Thomas J; Nadalutti, Cristina A; Motori, Elisa et al. (2018) Topoisomerase 3? Is Required for Decatenation and Segregation of Human mtDNA. Mol Cell 69:9-23.e6
Becker, Silke; Wang, Haibo; Simmons, Aaron B et al. (2018) Targeted Knockdown of Overexpressed VEGFA or VEGF164 in Müller cells maintains retinal function by triggering different signaling mechanisms. Sci Rep 8:2003
Kim, R D; Alberts, S R; Peña, C et al. (2018) Phase I dose-escalation study of copanlisib in combination with gemcitabine or cisplatin plus gemcitabine in patients with advanced cancer. Br J Cancer 118:462-470
Chiang, Yun-Chen; Park, In-Young; Terzo, Esteban A et al. (2018) SETD2 Haploinsufficiency for Microtubule Methylation Is an Early Driver of Genomic Instability in Renal Cell Carcinoma. Cancer Res 78:3135-3146
Reuland, Daniel S; Cubillos, Laura; Brenner, Alison T et al. (2018) A pre-post study testing a lung cancer screening decision aid in primary care. BMC Med Inform Decis Mak 18:5
Kornides, Melanie L; McRee, Annie-Laurie; Gilkey, Melissa B (2018) Parents Who Decline HPV Vaccination: Who Later Accepts and Why? Acad Pediatr 18:S37-S43
Ramsingh, Arlene I; Gray, Steven J; Reilly, Andrew et al. (2018) Sustained AAV9-mediated expression of a non-self protein in the CNS of non-human primates after immunomodulation. PLoS One 13:e0198154

Showing the most recent 10 out of 1525 publications