The Cancer Immunology Program is composed of 34 investigators (29 Full and 5 Associate members) from 13 Departments. The overall goal of the Program is to understand how immune cells work in physiological and pathological conditions, in order to develop new strategies to harness the power of the immune system to fight cancer, and to understand how unique aspects of lymphocyte biology contribute to oncogenesis.
The specific aims are: 1) To discover mechanisms that lead to malignancies of the immune system and develop targeted therapies that exploit the urtique biology of immune cell malignancies;2) To study the basic mechanisms regulating immune responses and their alteration in tumor-bearing hosts, including aspects of antigen presentation, signaling, effector programs and tolerance;and 3) To develop new immunotherapies for the treatment of cancer and test them in pre-clinical and clinical studies. To achieve these goals, the Program promotes forums for interactions between laboratory scientists and clinicians who share a common interest in Cancer Immunology;provides access to sophisticated technologies that are beyond the reach of individual laboratories;and supports members, particularly junior investigators, with seed money for pilot projects for translational applications in cancer immunology. Drs. Sandra Demaria and Michael Dustin are the Co-Leaders for this Program. Total funding increased from $12,703,949 to $15,514,219 since the last competitive application. Membership has decreased from 38 to 34. Publications for the period total 333, of which 7.5% are intra-programmatic, 20.1% are inter-programmatic, and 5.4% are both intra- and inter-programmatic collaborations

Public Health Relevance

Improved understanding of the intricate functioning of the immune system is essential for achieving progress in cancer treatment. This program provides the vehicle for cooperation between investigators with multidisciplinary expertise that is essential for the development of innovative therapeutic strategies exploiting the power of the immune system.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016087-33
Application #
8436427
Study Section
Subcommittee G - Education (NCI)
Project Start
2013-03-01
Project End
2018-02-28
Budget Start
2013-04-01
Budget End
2014-02-28
Support Year
33
Fiscal Year
2013
Total Cost
$19,456
Indirect Cost
$7,978
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Nancy, Patrice; Siewiera, Johan; Rizzuto, Gabrielle et al. (2018) H3K27me3 dynamics dictate evolving uterine states in pregnancy and parturition. J Clin Invest 128:233-247
Wang, Shiyang; Liechty, Benjamin; Patel, Seema et al. (2018) Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol 138:183-190
Ge, Wenzhen; Clendenen, Tess V; Afanasyeva, Yelena et al. (2018) Circulating anti-Müllerian hormone and breast cancer risk: A study in ten prospective cohorts. Int J Cancer 142:2215-2226
Schulfer, Anjelique F; Battaglia, Thomas; Alvarez, Yelina et al. (2018) Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat Microbiol 3:234-242
Winer, Benjamin Y; Shirvani-Dastgerdi, Elham; Bram, Yaron et al. (2018) Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med 10:
Ruggles, Kelly V; Wang, Jincheng; Volkova, Angelina et al. (2018) Changes in the Gut Microbiota of Urban Subjects during an Immersion in the Traditional Diet and Lifestyle of a Rainforest Village. mSphere 3:
Marié, Isabelle J; Chang, Hao-Ming; Levy, David E (2018) HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 215:3194-3212
Gupta, Ankit; Xu, Jing; Lee, Shirley et al. (2018) Facile target validation in an animal model with intracellularly expressed monobodies. Nat Chem Biol 14:895-900
Lee, Hyun-Wook; Park, Sung-Hyun; Weng, Mao-Wen et al. (2018) E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc Natl Acad Sci U S A 115:E1560-E1569
Evensen, Nikki A; Madhusoodhan, P Pallavi; Meyer, Julia et al. (2018) MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia. Haematologica 103:830-839

Showing the most recent 10 out of 1170 publications