The Growth Control Program is composed of 38 investigators (34 Full and 4 Associate members) from 15 Departments with a common interest in understanding the cellular and molecular mechanisms by which eukaryotic cells regulate survival proliferation, and/or division. Moreover, members of this Program are committed to integrating basic research with an understanding of malignant transformation and the identification of targets for cancer therapeutics. The overall goal of the Program is to actively promote research collaborations amongst its members and facilitate the application of a wide range of cutting-edge research tools and approaches to better understand basic regulatory mechanisms that suppress malignant transformation in human cells. The Program has the following Specific Aims: 1) To study transcriptional and epigenetic machineries that regulate cell proliferation and differentiation;2) To elucidate intracellular cell signaling networks regulating cell survival and growth;3) To determine how cells control their division and checkpoints;4) To understand the mechanisms of action of oncogenes and tumor suppressors;and 5) To translate the knowledge generated from basic studies into tools to fight cancer. Wei Dai and Michele Pagano are the Co-Leaders for this Program. Total funding increased from $16,079,153 to $16,483,886 since the last competitive application. Membership has decreased from 45 to 38. Publications for the period total 477, of which 7.5% are intra-programmatic, 19.3% are inter-programmatic, and 2.7% are both intra- and interprogrammatic collaborations.

Public Health Relevance

Cancer is a collection of diseases characterized by uncontrolled cell growth. Deregulated cellular and molecular processes that govern cell survival, division, and/or death play key roles in the development of cancer. The Program functions to promote research collaborations among its members to better understand basic mechanisms that curb cancer development.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016087-34
Application #
8765168
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
34
Fiscal Year
2014
Total Cost
$2,936
Indirect Cost
$1,204
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Pelzek, Adam J; Shopsin, Bo; Radke, Emily E et al. (2018) Human Memory B Cells Targeting Staphylococcus aureus Exotoxins Are Prevalent with Skin and Soft Tissue Infection. MBio 9:
Chiou, Kenneth L; Bergey, Christina M (2018) Methylation-based enrichment facilitates low-cost, noninvasive genomic scale sequencing of populations from feces. Sci Rep 8:1975
Jose, Cynthia C; Jagannathan, Lakshmanan; Tanwar, Vinay S et al. (2018) Nickel exposure induces persistent mesenchymal phenotype in human lung epithelial cells through epigenetic activation of ZEB1. Mol Carcinog 57:794-806
Kourtis, Nikos; Lazaris, Charalampos; Hockemeyer, Kathryn et al. (2018) Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med 24:1157-1166
Formenti, Silvia C; Lee, Percy; Adams, Sylvia et al. (2018) Focal Irradiation and Systemic TGF? Blockade in Metastatic Breast Cancer. Clin Cancer Res 24:2493-2504
Snuderl, Matija; Kannan, Kasthuri; Pfaff, Elke et al. (2018) Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nat Commun 9:2868
Lee, Chul-Hwan; Yu, Jia-Ray; Kumar, Sunil et al. (2018) Allosteric Activation Dictates PRC2 Activity Independent of Its Recruitment to Chromatin. Mol Cell 70:422-434.e6
Stafford, James M; Lee, Chul-Hwan; Voigt, Philipp et al. (2018) Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci Adv 4:eaau5935
Jung, Heekyung; Baek, Myungin; D'Elia, Kristen P et al. (2018) The Ancient Origins of Neural Substrates for Land Walking. Cell 172:667-682.e15
Aiello, Nicole M; Maddipati, Ravikanth; Norgard, Robert J et al. (2018) EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev Cell 45:681-695.e4

Showing the most recent 10 out of 1170 publications