The Proteomics Shared Resource provides state-of the-art biological mass spectrometry analyses to cancer researchers at NYU to help them identify and characterize proteins of medical importance. In many cases, it is only by studying proteins directly that one can achieve a useful understanding of the processes that underly the functioning of cells and tissues in normal and diseased states such as cancer. The shared resource has the capability to identify single, hundreds or even thousands of proteins in a single analysis, often at subfemtomole levels, by state of the art liquid chromatography-tandem mass spectrometry followed by database searching or de novo sequence determination. In most cases the facility strives to obtain accurate information about the absolute and/or relative quantities of these proteins from cells under various conditions to obtain important information about the functioning of the proteins. The shared resource also has special expertise in characterizing posttranslational modifications of proteins such as phosphorylation, acylation, glycosylation and ubiquitination. In addition to its technical expertise, one of the strengths of the facility is its ability to advise clients in the design and interpretation of experiments so that useful data can be obtained and meaningful information can be had from these data. Reliance on cutting edge technology and its expert and dedicated staff allow these services to be performed in a cost effective manner. Indeed, many experiments by investigators at NYU and the NYU Cancer Institute (NYUCI) could not have been done without the assistance of the Shared Resource. The Resource also has established a Clinical Proteomics Core for the detection of protein and peptide biomarkers for the early detection of cancer.

Public Health Relevance

Many or most diseases such as cancer are caused by improper amount, structure and/or functioning of proteins in cells. The NYUCI Proteomics Shared Resource employs state-of-the-art mass spectrometry technology to help cancer researchers characterize individual proteins or groups of proteins of interest with the goal of identifying the causes of cancer as a basis developing anticancer therapies

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016087-37
Application #
9260791
Study Section
Subcommittee A - Cancer Centers (NCI-A)
Project Start
Project End
2019-02-28
Budget Start
2017-03-01
Budget End
2018-02-28
Support Year
37
Fiscal Year
2017
Total Cost
$62,853
Indirect Cost
$25,772
Name
New York University
Department
Type
Domestic Higher Education
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Litwinoff, Evelyn M S; Gold, Merav Y; Singh, Karan et al. (2018) Myeloid ATG16L1 does not affect adipose tissue inflammation or body mass in mice fed high fat diet. Obes Res Clin Pract 12:174-186
Snetkova, Valentina; Skok, Jane A (2018) Enhancer talk. Epigenomics 10:483-498
Fan, Xiaozhou; Alekseyenko, Alexander V; Wu, Jing et al. (2018) Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67:120-127
Gregory, Ann C; Sullivan, Matthew B; Segal, Leopoldo N et al. (2018) Smoking is associated with quantifiable differences in the human lung DNA virome and metabolome. Respir Res 19:174
Lee, Chul-Hwan; Holder, Marlene; Grau, Daniel et al. (2018) Distinct Stimulatory Mechanisms Regulate the Catalytic Activity of Polycomb Repressive Complex 2. Mol Cell 70:435-448.e5
Bertrand, Anne; Baron, Maria; Hoang, Dung M et al. (2018) In Vivo Evaluation of Neuronal Transport in Murine Models of Neurodegeneration Using Manganese-Enhanced MRI. Methods Mol Biol 1779:527-541
Taylor, Martin S; Altukhov, Ilya; Molloy, Kelly R et al. (2018) Dissection of affinity captured LINE-1 macromolecular complexes. Elife 7:
Wang, Sophia S; Carrington, Mary; Berndt, Sonja I et al. (2018) HLA Class I and II Diversity Contributes to the Etiologic Heterogeneity of Non-Hodgkin Lymphoma Subtypes. Cancer Res 78:4086-4096
Jung, Seungyoun; Allen, Naomi; Arslan, Alan A et al. (2018) Anti-Müllerian hormone and risk of ovarian cancer in nine cohorts. Int J Cancer 142:262-270
Gong, Yixiao; Lazaris, Charalampos; Sakellaropoulos, Theodore et al. (2018) Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries. Nat Commun 9:542

Showing the most recent 10 out of 1170 publications