APPLIED BIOINFORMATICS LABORATORIES (ABL) The overarching goal of the Applied Bioinformatics Laboratories (ABL) is to provide robust, cost-effective, rapid and reproducible analysis of biomedical data, including, but not limited to multi-omics, imaging and clinical data. This goal is accomplished by using a variety of established and novel computational workflows, methods and tools. Under the directorship of Dr. Aristotelis Tsirigos, ABL provides start-to-finish standardization of the analysis of sequencing datasets, rigorous data quality assessment, integration and visualization, as well as statistical expertise in close collaboration with the Biostatistics shared resource (Biostat). ABL also works closely with other PCC shared resources, most notably the Genome Technology Center and the Center for Biospecimen Research and Development. The results of the bioinformatics analyses conducted in ABL are shared with PCC investigators via a customized interface and are also accessible via the High-Performance Computing (HPC) cluster. Beyond data management and analysis, ABL contributes to all aspects of the research cycle by means of three Specific Aims:
Aim 1) To provide unified and streamlined analysis of biomedical data generated by PCC investigators;
Aim 2) To manage and disseminate data and results of bioinformatics analyses;
Aim 3) To utilized data integration and machine learning methods to generate new insights and hypotheses.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016087-38
Application #
9633406
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
2024-02-29
Budget Start
2019-03-01
Budget End
2020-02-29
Support Year
38
Fiscal Year
2019
Total Cost
Indirect Cost
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Berger, Ashton C; Korkut, Anil; Kanchi, Rupa S et al. (2018) A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell 33:690-705.e9
Harper, Lamia; Balasubramanian, Divya; Ohneck, Elizabeth A et al. (2018) Staphylococcus aureus Responds to the Central Metabolite Pyruvate To Regulate Virulence. MBio 9:
Gowen, Michael F; Giles, Keith M; Simpson, Danny et al. (2018) Baseline antibody profiles predict toxicity in melanoma patients treated with immune checkpoint inhibitors. J Transl Med 16:82
Llewellyn, Sean R; Britton, Graham J; Contijoch, Eduardo J et al. (2018) Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice. Gastroenterology 154:1037-1046.e2
Pelzek, Adam J; Shopsin, Bo; Radke, Emily E et al. (2018) Human Memory B Cells Targeting Staphylococcus aureus Exotoxins Are Prevalent with Skin and Soft Tissue Infection. MBio 9:
Chiou, Kenneth L; Bergey, Christina M (2018) Methylation-based enrichment facilitates low-cost, noninvasive genomic scale sequencing of populations from feces. Sci Rep 8:1975
Jose, Cynthia C; Jagannathan, Lakshmanan; Tanwar, Vinay S et al. (2018) Nickel exposure induces persistent mesenchymal phenotype in human lung epithelial cells through epigenetic activation of ZEB1. Mol Carcinog 57:794-806
Kourtis, Nikos; Lazaris, Charalampos; Hockemeyer, Kathryn et al. (2018) Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med 24:1157-1166
Formenti, Silvia C; Lee, Percy; Adams, Sylvia et al. (2018) Focal Irradiation and Systemic TGF? Blockade in Metastatic Breast Cancer. Clin Cancer Res 24:2493-2504
Snuderl, Matija; Kannan, Kasthuri; Pfaff, Elke et al. (2018) Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nat Commun 9:2868

Showing the most recent 10 out of 1170 publications