The Cancer Imaging Core serves ACC investigators with cancer-related clinical trials and translational research that involve imaging biomarkers and/or imaging-related endpoints. The overarching goals of the Core are to facilitate and support the use of high quality, advanced imaging modalities in clinical trials by providing easily accessed, reliable, reproducible, timely and validated imaging data and results in a timely and cost- effective manner. In addition to scientific imaging consultation, the Core provides protocol development services, standardized data acquisition methods for cancer imaging trials, and expert image response assessment analyses. The Core supports investigator access to a variety of cancer imaging methods, both standard clinical imaging studies and novel cancer imaging methods developed by Penn investigators, e.g., cancer imaging biomarker methods. The Core's objectives are to: 1) provide high quality consistent image acquisition processes and image analysis for cancer clinical trials involving imaging endpoints; 2) assist with protocol development, submission and activation of cancer clinical trials that involve imaging modalities; 3) provide scientific consultation to clinical investigators on the most appropriate cancer imaging methods to meet scientific needs; and 4) direct investigators to the appropriate choice of both standard and advanced imaging methodologies in ACC clinical investigations. Users and usage has steadily increased over the current project period, and seven of 11 ACC Programs are actively using the Core services in their scientific studies. The Core's ability to provide cost-effective, consistent, and timely quantitative image response assessment is made possible through new web-based tools. Recent changes include: 1) recruitment of an experienced new Co- Leader, Dr. David Mankoff; 2) expanded and more highly automated services for imaging response assessment and support for advanced imaging methods; 3) expanded capabilities in PET and molecular imaging, and 4) recruitment of seasoned Core staff with experience in cancer imaging core administration and imaging-related regulatory matters. Through its support of both standard imaging in cancer clinical trials and advanced imaging for ACC clinical trials, the Core is poised to lead the ACC into the next generation of clinical and translational research studies guided by quantitative cancer imaging. The current yearly rate of imaging response assessment is over 800 studies per year, involving 57 trials, of which 46 were initiated in the current year. A total of 120 new protocols and 31 different investigators, all of whom are ACC members, used the Core in the reporting period (10/01/13-9/30/14). CCSG support represents 33% of the proposed Core budget with the remaining funding coming from charge backs and other grants/contracts. Additional Institutional support is provided in the form of funding for the development of advanced imaging and image analysis methods.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016520-43
Application #
9618131
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
43
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Bengsch, Bertram; Ohtani, Takuya; Khan, Omar et al. (2018) Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exhausted CD8 T Cells. Immunity 48:1029-1045.e5
Krump, Nathan A; Liu, Wei; You, Jianxin (2018) Mechanisms of persistence by small DNA tumor viruses. Curr Opin Virol 32:71-79
Bhagwat, Neha; Dulmage, Keely; Pletcher Jr, Charles H et al. (2018) An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Sci Rep 8:5035
Nair, Praful R; Alvey, Cory; Jin, Xiaoling et al. (2018) Filomicelles Deliver a Chemo-Differentiation Combination of Paclitaxel and Retinoic Acid That Durably Represses Carcinomas in Liver to Prolong Survival. Bioconjug Chem 29:914-927
Kasner, Margaret T; Mick, Rosemarie; Jeschke, Grace R et al. (2018) Sirolimus enhances remission induction in patients with high risk acute myeloid leukemia and mTORC1 target inhibition. Invest New Drugs 36:657-666
Raposo-Ferreira, Talita M M; Brisson, Becky K; Durham, Amy C et al. (2018) Characteristics of the Epithelial-Mesenchymal Transition in Primary and Paired Metastatic Canine Mammary Carcinomas. Vet Pathol 55:622-633
Huffman, Austin P; Richman, Lee P; Crisalli, Lisa et al. (2018) Pharmacodynamic Monitoring Predicts Outcomes of CCR5 Blockade as Graft-versus-Host Disease Prophylaxis. Biol Blood Marrow Transplant 24:594-599
Karakasheva, Tatiana A; Lin, Eric W; Tang, Qiaosi et al. (2018) IL-6 Mediates Cross-Talk between Tumor Cells and Activated Fibroblasts in the Tumor Microenvironment. Cancer Res 78:4957-4970
Yam, Clinton; Xu, Xiaowei; Davies, Michael A et al. (2018) A Multicenter Phase I Study Evaluating Dual PI3K and BRAF Inhibition with PX-866 and Vemurafenib in Patients with Advanced BRAF V600-Mutant Solid Tumors. Clin Cancer Res 24:22-32
Huang, Mo; Wang, Jingshu; Torre, Eduardo et al. (2018) SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods 15:539-542

Showing the most recent 10 out of 1047 publications