? Cancer Therapeutics Program (CTP) The overall goal of this 25-year-old Program at the Abramson Cancer Center (ACC) is to use mechanistic insights emerging from our basic science labs and CCSG Programs to improve cancer therapy for patients with advanced solid tumors. CTP accomplishes this goal through three Specific Aims: 1) Translate mechanistic biologic insights into Phase I trials; 2) Use data from Phase I trials to perform Phase II and Phase III trials to change clinical practice; and 3) Discover and develop innovative biomarkers that enhance safety and efficacy of cancer therapies. This Program is co-led by Program Leaders (PLs) Drs. Ravi Amaravadi and Naomi Haas, both appointed in 2013. Drs. Amaravadi and Haas are NCI-funded researchers who bring highly complementary scientific visions and a notable depth of experience as accomplished translational researchers. CTP encompasses a full range of basic, translational, and clinical research. CTP works closely with leaders of the ACC Community Outreach and Engagement (COE) to understand the cancer burden in the ACC catchment area and ensure that CTP research addresses the major unmet needs in our catchment area. CTP members work on improving cancer therapies for patients with advanced, lethal and often highly symptomatic solid tumors, including lung, prostate and pancreas cancer, as well as melanoma and others. During the current funding period, the PLs aggressively recruited new junior and senior investigators to CTP, reorganized the Program into disease-focused groups, and promoted intra-Programmatic interactions through carefully selected and relevant scientific themes including autophagy, cancer cell metabolism, targeted therapies, and immunotherapy. These efforts resulted in new multi-investigator grants, including NCI Program Project grants and SPORES that include CTP members, new leadership positions in National Groups, and an increase in collaborative publications. Interventional trial accruals were more than 640 per year on average (in CTP alone), representing an increase compared to the prior funding period; 59% of interventional accruals were on investigator-initiated trials. Major accomplishments include validating autophagy as a cancer target, translating basic findings in DNA damage to new therapies in ovarian and pancreatic cancer, determining the pharmacodynamics of PD-1 therapy in patients with earlier stage melanoma, testing novel immunotherapies such as monalizumab, CD40 mAb, and CAR T cells in patients with solid tumors, and advancing circulating DNA as a biomarker of response in lung cancer. The 31 CTP full members and 28 CTP associate members represent six departments from two schools at Penn. CTP members have $14.7M in annual cancer-related research grant funding (direct costs), of which $3.1M is NCI-funded and $4.5M is peer-reviewed. This represents an increase in total funding of $8M (120% increase) since 2015. Our Program has 16 R01- equivalents. There are 540 cancer-related publications from the Program since 2015. Of these, 19% are intra- Programmatic, 38% resulted from inter-Programmatic collaborations, and 74% are multi-institutional.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016520-45
Application #
10088745
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-01-15
Project End
2025-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Rosenfeld, Aaron M; Meng, Wenzhao; Luning Prak, Eline T et al. (2018) ImmuneDB, a Novel Tool for the Analysis, Storage, and Dissemination of Immune Repertoire Sequencing Data. Front Immunol 9:2107
Lang, Fengchao; Sun, Zhiguo; Pei, Yonggang et al. (2018) Shugoshin 1 is dislocated by KSHV-encoded LANA inducing aneuploidy. PLoS Pathog 14:e1007253
Buljan, Vlado A; Graeber, Manuel B; Holsinger, R M Damian et al. (2018) Calcium-axonemal microtubuli interactions underlie mechanism(s) of primary cilia morphological changes. J Biol Phys 44:53-80
Kushner, Carolyn J; Hwang, Wei-Ting; Wang, Shiyu et al. (2018) Long-term risk of second malignancies in women after breast conservation therapy for ductal carcinoma in situ or early-stage breast cancer. Breast Cancer Res Treat 170:45-53
Chang, Changgee; Kundu, Suprateek; Long, Qi (2018) Scalable Bayesian variable selection for structured high-dimensional data. Biometrics :
Min, Eun Jeong; Safo, Sandra E; Long, Qi (2018) Penalized Co-Inertia Analysis with Applications to -Omics Data. Bioinformatics :
Singh, Rajnish Kumar; Lang, Fengchao; Pei, Yonggang et al. (2018) Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog 14:e1007062
Pei, Yonggang; Singh, Rajnish Kumar; Shukla, Sanket Kumar et al. (2018) Epstein-Barr Virus Nuclear Antigen 3C Facilitates Cell Proliferation by Regulating Cyclin D2. J Virol 92:
Nicastri, Michael C; Rebecca, Vito W; Amaravadi, Ravi K et al. (2018) Dimeric quinacrines as chemical tools to identify PPT1, a new regulator of autophagy in cancer cells. Mol Cell Oncol 5:e1395504
Micallef, Ivana N; Stiff, Patrick J; Nademanee, Auayporn P et al. (2018) Plerixafor Plus Granulocyte Colony-Stimulating Factor for Patients with Non-Hodgkin Lymphoma and Multiple Myeloma: Long-Term Follow-Up Report. Biol Blood Marrow Transplant 24:1187-1195

Showing the most recent 10 out of 1047 publications