The Monoclonal Antibody (MAb) Facility (MAF) provides non-commercially-available antibodies to MD Anderson Cancer Center investigators for specific applications. The MAF serves basic, translational and clinical researchers across the institution and is currently developing projects in each of these three areas. Although the services are based on """"""""traditional"""""""" murine hybridoma technology, the MAF offers custom immunization strategies and support for functional screening in order to produce unique antibodies suitable for novel applications. The MAF occupies 726 sq. ft. in 1SCRB, home to the Center for Cancer Immunology Research (CCIR) on the South Campus. This is a state-of-the-art facility for immunology research that provides a platform for integrating basic and clinical research programs. The CCIR is equipped with customized laboratory services, centralized tissue culture rooms, liquid nitrogen tank rooms, and glassware washing and sterilization facilities, all of which are available to the MAF. The MAF has a tissue culture laboratory (SCR 4.2158), a protein chemistry area (SCR 4.2220), and space in the South Campus Vivarium that is a component of the Research Animal Support Facility shared resource. In the last 5-year period, the MAF developed three MAbs that have potential for clinical development as therapeutic agents, and several additional candidates are in preclinical assessment. Several antibodies produced by the MAF have been licensed or are in the process of being licensed for commercial development. MD Anderson members with peer-reviewed funding accounted for 97% of the usage of the resource and 30% support is requested from the CCSG. Since 2007, the MAF has supported the research of 40 MD Anderson investigators with peer reviewed funding representing 16 CCSG Programs, compared to 13 investigators in the previous grant period. Hybridoma production increased from 44 to 79 projects (a 178% increase), and total services provided increased more than 300% during this grant cycle. Publications cited using the MAF have appeared in Nature, PNAS, Blood and Nature Medicine. Future plans include the purchase of a bioreactor for large scale production to support the increasing demand for the quantities of MAbs required for preclinical development Novel methods of immunization including DNA expression will be explored. The facility also plans to explore the direct generation of """"""""fully human antibodies"""""""" using """"""""humanized"""""""" mice or using Phage display scFv libraries as a more rapid and direct strategy to produce antibodies for future clinical applications of newly-discovered markers.

Public Health Relevance

The MAF develops high-quality, cost-effective customized MAbs to meet the basic, translational, and clinical research needs of MD Anderson investigators. Rates are comparable to other institutions across the country and, in some cases, significantly lower. Many of the MAbs generated have been licensed or patented.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016672-39
Application #
8759798
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
39
Fiscal Year
2014
Total Cost
$94,488
Indirect Cost
$35,458
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Ma, Grace X; Lee, Minsun M; Tan, Yin et al. (2018) Efficacy of a community-based participatory and multilevel intervention to enhance hepatitis B virus screening and vaccination in underserved Korean Americans. Cancer 124:973-982
Peng, Guang; Mills, Gordon B (2018) Surviving Ovarian Cancer: An Affair between Defective DNA Repair and RB1. Clin Cancer Res 24:508-510
Radovich, Milan; Pickering, Curtis R; Felau, Ina et al. (2018) The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 33:244-258.e10
Tetzlaff, Michael T; Nelson, Kelly C; Diab, Adi et al. (2018) Granulomatous/sarcoid-like lesions associated with checkpoint inhibitors: a marker of therapy response in a subset of melanoma patients. J Immunother Cancer 6:14
Tayob, Nabihah; Richardson, Peter; White, Donna L et al. (2018) Evaluating screening approaches for hepatocellular carcinoma in a cohort of HCV related cirrhosis patients from the Veteran's Affairs Health Care System. BMC Med Res Methodol 18:1
Caruso, Joseph A; Duong, Mylinh T; Carey, Jason P W et al. (2018) Low-Molecular-Weight Cyclin E in Human Cancer: Cellular Consequences and Opportunities for Targeted Therapies. Cancer Res 78:5481-5491
Yu, Wangie; Chen, Yunyun; Dubrulle, Julien et al. (2018) Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Sci Rep 8:4306
Tanco, Kimberson; Azhar, Ahsan; Rhondali, Wadih et al. (2018) The Effect of Message Content and Clinical Outcome on Patients' Perception of Physician Compassion: A Randomized Controlled Trial. Oncologist 23:375-382
Elimova, Elena; Wang, Xuemei; Qiao, Wei et al. (2018) Actionable Locoregional Relapses after Therapy of Localized Esophageal Cancer: Insights from a Large Cohort. Oncology 94:345-353
Hoadley, Katherine A; Yau, Christina; Hinoue, Toshinori et al. (2018) Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173:291-304.e6

Showing the most recent 10 out of 12418 publications