SMALL ANIMAL IMAGING FACILITY (SAIF) The mission of the Small Animal Imaging Facility (SAIF) is to advance cancer research by providing cancer center members with powerful imaging technologies and the expertise necessary to successfully integrate imaging sciences into preclinical cancer research. Dr. John D. Hazle serves as director, and Dr. James A. Bankson serves as co-director. The facility includes faculty experts, specially trained staff, and state-of-the-art imaging instrumentation, most of which is not available anywhere else in the cancer center. The SAIF has 3 separate sites across the campus to ensure convenient access to all cancer center members. SAIF imaging laboratories are located on the North Campus adjacent to and contiguous with the small animal vivarium, inside the South Campus Vivarium, and in South Campus Research Building #3. SAIF faculty and staff are available to support all aspects of imaging in preclinical cancer research, from proposal and experiment design through data acquisition, analysis, interpretation, and presentation. Currently, the SAIF has 21 unique pieces of imaging equipment optimized for small animals and a full complement of ancillary equipment for support of animals before, during, and after experiments. The imaging equipment includes 3 high-field magnetic resonance scanners, a low-field permanent magnet magnetic resonance scanner, a dynamic nuclear polarization system for generating hyperpolarized magnetic resonance agents, a microcomputed tomography system, a positron emission tomography/single-photon emission computed tomography/computed tomography scanner, 2 small- animal radiation research platforms, 2 ultrasound systems (1 capable of photoacoustic imaging), a dedicated photoacoustic imaging system, a cabinet X-Ray system, 6 optical imaging systems, and a prototype magnetic relaxometry system (on loan as part of a research agreement). During this grant period, MD Anderson has funded $5,918,344 in capital equipment, and approximately $1.1M has been obtained through NCI Shared or High-end Instrumentation grants. Annual operational funding is $195,521 (20%) from the CCSG, $719,742 (74%) from program income, and $53,413 (6%) of institutional support. During this 6-year grant period, the SAIF served a total of 250 cancer center members, including investigators from all 16 CCSG programs. A total of 87% of all usage was peer-review funded, and the SAIF is requesting $200,057 (20%) from the CCSG in grant Yr44. Overall use has increased 2.7-fold in Yr42 over the average use in the prior funding cycle. The SAIF supported 181 peer-reviewed publications during this reporting period, with 51 (28%) published in journals with IF >10 and 119 (66%) published in those with IF >5.
The specific aims are:
Aim 1 : To maintain a broad range of state-of-the-art imaging instrumentation and dedicated staff that support the preclinical imaging needs of cancer center members;
Aim 2 : To provide consultation, training and support in the planning, acquisition, and analysis of imaging data;
and Aim 3 : To develop and implement new technologies and methods that improve the accuracy and precision of quantitative imaging biomarkers in preclinical cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016672-43
Application #
9794659
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
43
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Taylor, Alison M; Shih, Juliann; Ha, Gavin et al. (2018) Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell 33:676-689.e3
Golemis, Erica A; Scheet, Paul; Beck, Tim N et al. (2018) Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 32:868-902
Jabbour, Elias; DerSarkissian, Maral; Duh, Mei Sheng et al. (2018) Efficacy of Ponatinib Versus Earlier Generation Tyrosine Kinase Inhibitors for Front-line Treatment of Newly Diagnosed Philadelphia-positive Acute Lymphoblastic Leukemia. Clin Lymphoma Myeloma Leuk 18:257-265
Pataer, Apar; Shao, Ruping; Correa, Arlene M et al. (2018) Major pathologic response and RAD51 predict survival in lung cancer patients receiving neoadjuvant chemotherapy. Cancer Med 7:2405-2414
Short, Nicholas J; Kantarjian, Hagop; Ravandi, Farhad et al. (2018) A phase I/II randomized trial of clofarabine or fludarabine added to idarubicin and cytarabine for adults with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma 59:813-820
Shank, Brandon R; Deaver, Melissa; Baker, Angela et al. (2018) Interdisciplinary implementation of tacrolimus intravenous standard concentration in hematopoietic stem cell transplantation recipients. J Oncol Pharm Pract 24:365-370
Keung, Emily Z; Chiang, Yi-Ju; Voss, Rachel K et al. (2018) Defining the incidence and clinical significance of lymph node metastasis in soft tissue sarcoma. Eur J Surg Oncol 44:170-177
Wang, Jue; Zhao, Wei; Guo, Huifang et al. (2018) AKT isoform-specific expression and activation across cancer lineages. BMC Cancer 18:742
Lu, Zhongming; Sturgis, Erich M; Zhu, Lijun et al. (2018) Mouse double minute 4 variants modify susceptibility to risk of recurrence in patients with squamous cell carcinoma of the oropharynx. Mol Carcinog 57:361-369
Murray, Thomas A; Yuan, Ying; Thall, Peter F et al. (2018) A utility-based design for randomized comparative trials with ordinal outcomes and prognostic subgroups. Biometrics 74:1095-1103

Showing the most recent 10 out of 12418 publications