) Since its origin in Fall 1996, the Pharmacology Core has steadily grown into being an important CCC resource for several investigators. Its mission is providing expertise in pharmacological sciences, including kinetics, dynamics, biopharmaceutics and physical pharmacy. Pharmacokinetic support includes drug absorption, metabolism, distribution, elimination, bioactivation and drug-drug interactions. Pharmacodynamic support includes molecular effects of drug exposure, and in vitro toxicity testing. Biopharmaceutic support includes the influence of dose and dosage form on pharmacokinetics. Physical pharmacy support includes production of (approximate dose) prototype forms of drugs for preclinical studies and clinical forms for IND studies. Enhancements of research by the Core take the form of study design, data acquisition, data analysis, and interpretation of results, including technical writing for manuscripts and grant proposals written by CCC investigators. This core also developed and oversees the Quality Assurance Plan for tracking and handling clinical pharmacology specimens throughout the Institute. Key features of this Core are the scope of services provided, its integral role in clinical specimen handling, existing collegial relationships, direct consultation for requesting investigators, and the interests and commitment of its staff. Pharmacological contributions benefited 5 Programs, including Developmental Therapeutics, Breast Cancer, Molecular Biology and Genetics, Prostate Cancer and Protease Programs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA022453-22S1
Application #
6503921
Study Section
Subcommittee E - Prevention &Control (NCI)
Project Start
2001-09-27
Project End
2001-11-30
Budget Start
Budget End
Support Year
22
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Wayne State University
Department
Type
DUNS #
City
Detroit
State
MI
Country
United States
Zip Code
48202
Shah, Seema; Brock, Ethan J; Jackson, Ryan M et al. (2018) Downregulation of Rap1Gap: A Switch from DCIS to Invasive Breast Carcinoma via ERK/MAPK Activation. Neoplasia 20:951-963
An, Mingrui; Wu, Jing; Zhu, Jianhui et al. (2018) Comparison of an Optimized Ultracentrifugation Method versus Size-Exclusion Chromatography for Isolation of Exosomes from Human Serum. J Proteome Res 17:3599-3605
Yu, Chunsong; An, Myunggi; Jones, Evan et al. (2018) Targeting Suppressive Oligonucleotide to Lymph Nodes Inhibits Toll-like Receptor-9-Mediated Activation of Adaptive Immunity. Pharm Res 35:56
Kariburyo, Furaha; Wang, Yuexi; Cheng, I-Ning Elaine et al. (2018) Observation versus treatment among men with favorable risk prostate cancer in a community-based integrated health care system: a retrospective cohort study. BMC Urol 18:55
Thakur, Manish K; Heilbrun, Lance; Dobson, Kimberlee et al. (2018) Phase I Trial of the Combination of Docetaxel, Prednisone, and Pasireotide in Metastatic Castrate-Resistant Prostate Cancer. Clin Genitourin Cancer 16:e695-e703
Feldmann, Daniel P; Cheng, Yilong; Kandil, Rima et al. (2018) In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells. J Control Release 276:50-58
Vaishampayan, Ulka (2018) Advantages and Adversities of the Weighted Toxicity Score. Clin Cancer Res 24:4918-4920
Wang, Zhaoxian; Sau, Samaresh; Alsaab, Hashem O et al. (2018) CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer. Nanomedicine 14:1441-1454
Ravindra, Manasa; Wilson, Mike R; Tong, Nian et al. (2018) Fluorine-Substituted Pyrrolo[2,3- d]Pyrimidine Analogues with Tumor Targeting via Cellular Uptake by Folate Receptor ? and the Proton-Coupled Folate Transporter and Inhibition of de Novo Purine Nucleotide Biosynthesis. J Med Chem 61:4228-4248
Kim, Seongho; Wong, Weng Kee (2018) Extended two-stage adaptive designs with three target responses for phase II clinical trials. Stat Methods Med Res 27:3628-3642

Showing the most recent 10 out of 826 publications