The Molecular Biology and Human Genetics Program analyzes the genomic information from studies of organisrns from yeast to humans in, the discovery and functional analysis of novel genes responsible for cancer predisposition in high risk families as well as in sporadic cancers. Cancer development is associated with a series of changes in cellular genes. These changes occur as mutations or variations in gene expression in cancer causing genes and in other genes, which respond to them. Genetic alterations provide molecular signatures specific to each tumor type. Cancer susceptibility genes frequently cause so-called """"""""genomic instability"""""""" in which cells develop DNA damage in critical cancer-causing genes such as oncogenes and tumor suppressor genes. Either germline or somatic mutations affect proteins involved in signal transduction such as growth factor receptor pathways or transcription factors leading to changes in gene expression. Similarly, epigenetic changes can occur in the germ line or in somatic cells. Studies in human populations at extreme risk to cancer can be applied to the general population in which the genetics of cancer risk is subtler. The current efforts of this Program are on mechanisms of genomic instability, chromatin structure, cell cycle checkpoint control, transcriptional regulation of signal transduction, and post-translational control mechanisms. We utilize cell lines and whole animals to model the genetic mechanisms leading to precancerous cells, the molecular signatures of precancerous lesions, and the critical genetic events in the progression of these cells to neoplasia. Because of the extensive body of genetic information on DNA repair genes and growth control mechanisms in model organisms, we are applying the genetics of yeast and mouse model systems to understand human gone structure and function. We are analyzing the human homologues of well-characterized DNA repair and checkpoint genes for their role in genetic and sporadic human cancers. These genetic mechanisms will provide useful molecular targets for early detection, chemoprevention and chemotherapy. This body of knowledge also provides a novel approach to cancer risk determination in special populations.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wayne State University
United States
Zip Code
Campbell, Douglas H; Lund, Maria E; Nocon, Aline L et al. (2018) Detection of glypican-1 (GPC-1) expression in urine cell sediments in prostate cancer. PLoS One 13:e0196017
Sexton, Rachel E; Hachem, Ali H; Assi, Ali A et al. (2018) Metabotropic glutamate receptor-1 regulates inflammation in triple negative breast cancer. Sci Rep 8:16008
Cheriyan, Vino T; Alsaab, Hashem; Sekhar, Sreeja et al. (2018) A CARP-1 functional mimetic compound is synergistic with BRAF-targeting in non-small cell lung cancers. Oncotarget 9:29680-29697
Saadat, Nadia; Liu, Fangchao; Haynes, Brittany et al. (2018) Nano-delivery of RAD6/Translesion Synthesis Inhibitor SMI#9 for Triple-negative Breast Cancer Therapy. Mol Cancer Ther 17:2586-2597
Dedigama-Arachchige, Pavithra M; Acharige, Nuwan P N; Pflum, Mary Kay H (2018) Identification of PP1-Gadd34 substrates involved in the unfolded protein response using K-BIPS, a method for phosphatase substrate identification. Mol Omics 14:121-133
Burl, Rayanne B; Ramseyer, Vanesa D; Rondini, Elizabeth A et al. (2018) Deconstructing Adipogenesis Induced by ?3-Adrenergic Receptor Activation with Single-Cell Expression Profiling. Cell Metab 28:300-309.e4
Desai, Pinkal; Wallace, Robert; Anderson, Matthew L et al. (2018) An analysis of the association between statin use and risk of endometrial and ovarian cancers in the Women's Health Initiative. Gynecol Oncol 148:540-546
Thakur, Manish K; Ruterbusch, Julie J; Schwartz, Ann G et al. (2018) Risk of Second Lung Cancer in Patients with Previously Treated Lung Cancer: Analysis of Surveillance, Epidemiology, and End Results (SEER) Data. J Thorac Oncol 13:46-53
Ma, Huiyan; Ursin, Giske; Xu, Xinxin et al. (2018) Body mass index at age 18 years and recent body mass index in relation to risk of breast cancer overall and ER/PR/HER2-defined subtypes in white women and African-American women: a pooled analysis. Breast Cancer Res 20:5
Mitrea, Cristina; Wijesinghe, Priyanga; Dyson, Greg et al. (2018) Integrating 5hmC and gene expression data to infer regulatory mechanisms. Bioinformatics 34:1441-1447

Showing the most recent 10 out of 826 publications