The Pharmacology Core's mission is to provide state-of-the-art technology and expertise in bioanalysis, pharmacokinetics, and pharmacogenetics for evaluation of critical pharmacological endpoints in preclinical and eariy phase clinical studies. Two services, including pharmacokinetic/pharmacodynamic (PK/PD) sample processing and distribution service and bioanalysis service, have been provided since 2004. The PK/PD sample processing and distribution service provides support for clinical trials, including specimen transport, accountability, processing, storage, and distribution, in compliance with applicable Standard Operating Procedures (SOPs), IRB-approved protocols, and regulatory requirements. The bioanalysis service provides quantitative measurement of drugs and metabolites in biological samples (e.g., blood, plasma, serum, urine, or tissue samples) using high-performance liquid chromatography (HPLC) coupled with ultraviolet or fluorescence detection or tandem mass spectrometer detection (LC-MS/MS). In addition, three new service lines were recently developed in order to provide KCI investigators with comprehensive pharmacology support. These new services include: 1) bioanalytical methods development and validation service that includes evaluating all procedures for accuracy, precision, selectivity, sensitivity, reproducibility and stability of a particular HPLC or LC-MS/MS method;2) pharmacokinetic data analysis and modeling service that provides assistance in preclinical and clinical pharmacokinetic experimental design and protocol development as well as analysis and interpretation of pharmacokinetic data using traditional or population pharmacokinetic modeling approaches;and 3) pharmacogenetic analysis is a collaborative service with the Genomics Core that focuses on employing a candidate gene approach to examine the associations between common single nucleotide polymorphisms (SNPs) in selected genes (such as genes encoding drug metabolizing enzymes, transporters, or target receptors/enzymes) and PK parameters, PD effects, or clinical outcome (efficacy or toxicity) of clinical investigational anticancer agents. The Core is equipped with stateof- the-art analytical instruments such as LC-MS/MS. Available pharmacokinetic analysis software includes WinNonlin version 5.2 and NONMEM version 6. The laboratory is centrally located with convenient access forthe KCI investigators.

Public Health Relevance

The Pharmacology Core provides a centralized unit to facilitate cancer related clinical, translational, and basic science research with evaluation of critical pharmacological endpoints. The availability of this facility minimizes the cost and efforts of KCI investigators, and fosters interdisciplinary collaborations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA022453-29
Application #
8350775
Study Section
Subcommittee G - Education (NCI)
Project Start
2011-09-06
Project End
2015-11-30
Budget Start
2011-09-06
Budget End
2011-11-30
Support Year
29
Fiscal Year
2011
Total Cost
$43,445
Indirect Cost
Name
Wayne State University
Department
Type
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Chammaa, May; Malysa, Agnes; Redondo, Carlos et al. (2018) RUMI is a novel negative prognostic marker and therapeutic target in non-small-cell lung cancer. J Cell Physiol 233:9548-9562
Alsaab, Hashem O; Sau, Samaresh; Alzhrani, Rami M et al. (2018) Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials 183:280-294
Mills, Anne M; Peres, Lauren C; Meiss, Alice et al. (2018) Targetable Immune Regulatory Molecule Expression in High-Grade Serous Ovarian Carcinomas in African American Women: A Study of PD-L1 and IDO in 112 Cases From the African American Cancer Epidemiology Study (AACES). Int J Gynecol Pathol :
Vaishampayan, Ulka N; Podgorski, Izabela; Heilbrun, Lance K et al. (2018) Biomarkers and Bone Imaging Dynamics Associated with Clinical Outcomes of Oral Cabozantinib Therapy in Metastatic Castrate-Resistant Prostate Cancer. Clin Cancer Res :
Campbell, Douglas H; Lund, Maria E; Nocon, Aline L et al. (2018) Detection of glypican-1 (GPC-1) expression in urine cell sediments in prostate cancer. PLoS One 13:e0196017
Sexton, Rachel E; Hachem, Ali H; Assi, Ali A et al. (2018) Metabotropic glutamate receptor-1 regulates inflammation in triple negative breast cancer. Sci Rep 8:16008
Cheriyan, Vino T; Alsaab, Hashem; Sekhar, Sreeja et al. (2018) A CARP-1 functional mimetic compound is synergistic with BRAF-targeting in non-small cell lung cancers. Oncotarget 9:29680-29697
Saadat, Nadia; Liu, Fangchao; Haynes, Brittany et al. (2018) Nano-delivery of RAD6/Translesion Synthesis Inhibitor SMI#9 for Triple-negative Breast Cancer Therapy. Mol Cancer Ther 17:2586-2597
Dedigama-Arachchige, Pavithra M; Acharige, Nuwan P N; Pflum, Mary Kay H (2018) Identification of PP1-Gadd34 substrates involved in the unfolded protein response using K-BIPS, a method for phosphatase substrate identification. Mol Omics 14:121-133
Burl, Rayanne B; Ramseyer, Vanesa D; Rondini, Elizabeth A et al. (2018) Deconstructing Adipogenesis Induced by ?3-Adrenergic Receptor Activation with Single-Cell Expression Profiling. Cell Metab 28:300-309.e4

Showing the most recent 10 out of 826 publications