The Biorepository Core (BioC) complements the services provided by the Pharmacology Core and provides the laboratory-based, epidemiological, and clinical investigators with a diverse selection of human tissue specimens necessary for research. A major goal of the Core is to accelerate the transition from basic science to clinical research by providing access to well characterized human tissue. Within the established rules ofthe Human Investigative Committee and HIPAA, the Core performs several functions. These include patient consenting, tissue collection, tissue processing, banking and storage, retrieval, and transfer of fresh frozen and formalin fixed paraffin embedded human tissue obtained from the surgical suites and endoscopic units of KCI. Key services include case identification by diagnostic categories and subsequent retrieval of pathology materials (reports, blocks, slides, banked fixed and frozen materials), providing complete and accurate pathological diagnosis and interpretations.

Public Health Relevance

; BioC services enable basic science, population science, and clinical researchers to expand further into translational research. This is accomplished by the Core providing unique malignant and benign focused tissues from its tissue bank. Additionally, KCI investigators are able to use the BioC to rapidly evaluate targets and biomarkers relevant to cancer cure. Tissues acquired through this Core come from a diverse population, aiding research into health disparities.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA022453-31
Application #
8411085
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
31
Fiscal Year
2013
Total Cost
$46,094
Indirect Cost
$15,769
Name
Wayne State University
Department
Type
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Herroon, Mackenzie K; Rajagurubandara, Erandi; Diedrich, Jonathan D et al. (2018) Adipocyte-activated oxidative and ER stress pathways promote tumor survival in bone via upregulation of Heme Oxygenase 1 and Survivin. Sci Rep 8:40
Colacino, Justin A; Azizi, Ebrahim; Brooks, Michael D et al. (2018) Heterogeneity of Human Breast Stem and Progenitor Cells as Revealed by Transcriptional Profiling. Stem Cell Reports 10:1596-1609
Blocker, Stephanie J; Shields, Anthony F (2018) Imaging of Nanoparticle Distribution to Assess Treatments That Alter Delivery. Mol Imaging Biol 20:340-351
Guastella, Anthony R; Michelhaugh, Sharon K; Klinger, Neil V et al. (2018) Investigation of the aryl hydrocarbon receptor and the intrinsic tumoral component of the kynurenine pathway of tryptophan metabolism in primary brain tumors. J Neurooncol 139:239-249
Li, Feng; Wang, Yongli; Li, Dapeng et al. (2018) Perspectives on the recent developments with green tea polyphenols in drug discovery. Expert Opin Drug Discov 13:643-660
Ramseyer, Vanesa D; Kimler, Victoria A; Granneman, James G (2018) Vacuolar protein sorting 13C is a novel lipid droplet protein that inhibits lipolysis in brown adipocytes. Mol Metab 7:57-70
Healy, Mark A; Morris, Arden M; Abrahamse, Paul et al. (2018) The accuracy of chemotherapy ascertainment among colorectal cancer patients in the surveillance, epidemiology, and end results registry program. BMC Cancer 18:481
Lacher, Sarah E; Alazizi, Adnan; Wang, Xuting et al. (2018) A hypermorphic antioxidant response element is associated with increased MS4A6A expression and Alzheimer's disease. Redox Biol 14:686-693
Alsaab, Hashem O; Sau, Samaresh; Alzhrani, Rami M et al. (2018) Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials 183:280-294
Chammaa, May; Malysa, Agnes; Redondo, Carlos et al. (2018) RUMI is a novel negative prognostic marker and therapeutic target in non-small-cell lung cancer. J Cell Physiol 233:9548-9562

Showing the most recent 10 out of 826 publications