TRANSGENIC MOUSE SHARED RESOURCE ABSTRACT The availability of the Transgenic Mouse Shared Resource (TMSR) enables our investigators at the Moores Cancer Center (MCC) to conduct versatile, cutting-edge research with a battery of sophisticated genetic techniques for manipulation of the mouse genome to create models for studies of cancer for incisive in vivo mechanistic investigations of the fundamental processes involved in the etiology of tumor development and metastasis. Transgenic mice carrying new or novel genes are created by microinjection of DNA into the pronuclei of fertilized eggs, specific deletions and mutations are created using CRISPR/Cas9 technology, and ?knock-out? mice that have deleted or modified genes of interest are created by homologous recombination in embryonic stem cells followed by injection into blastocysts to create chimeric mice for breeding to homozygosity. The high degree of conservation of most sequences in genomes of humans and mice makes using mouse genetic manipulation technology to create models of human cancer pathogenesis extremely useful. These approaches are remarkably powerful in cancer research, particularly in the analysis of oncogenes, metastasis, cell-cycle control, tumor suppressor genes, and in the crafting of cancer model systems for developing new treatment regimens, and methods for drug testing and tumor imaging. The mission of this Shared Resource is to provide the highly technical aspects of manipulation of genes in embryos and mouse embryonic stem cells as a service to MCC members, to create the genetically manipulated mouse models they need. This is an example of how specialized techniques, highly trained and dedicated personnel, and expensive equipment can be accessed by researchers who could not reasonably expect to develop or obtain them on an individual basis. The TMSR provides cutting-edge, rapidly advancing, efficient, cost-effective services that adapt to the needs of our users, drive the field of mouse genetics, and continue to be very responsive to the vast creativity of the CCSG membership, fulfilling their needs for the most cutting-edge embryology and molecular genetics in the mouse.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA023100-34
Application #
9936323
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
34
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Jiang, Qingfei; Jamieson, Catriona (2018) BET'ing on Dual JAK/BET Inhibition as a Therapeutic Strategy for Myeloproliferative Neoplasms. Cancer Cell 33:3-5
Ramirez, Oscar; Aristizabal, Paula; Zaidi, Alia et al. (2018) Implementing a Childhood Cancer Outcomes Surveillance System Within a Population-Based Cancer Registry. J Glob Oncol :1-11
Liu, Liang; Yang, Lin; Yan, Wei et al. (2018) Chemotherapy Induces Breast Cancer Stemness in Association with Dysregulated Monocytosis. Clin Cancer Res 24:2370-2382
Lwin, Thinzar M; Murakami, Takashi; Miyake, Kentaro et al. (2018) Tumor-Specific Labeling of Pancreatic Cancer Using a Humanized Anti-CEA Antibody Conjugated to a Near-Infrared Fluorophore. Ann Surg Oncol 25:1079-1085
Singh, Siddharth; Loomba, Rohit (2018) Role of two-dimensional shear wave elastography in the assessment of chronic liver diseases. Hepatology 67:13-15
Hartman, Sheri J; Nelson, Sandahl H; Myers, Emily et al. (2018) Randomized controlled trial of increasing physical activity on objectively measured and self-reported cognitive functioning among breast cancer survivors: The memory & motion study. Cancer 124:192-202
Hoffmann, Hanne M; Gong, Ping; Tamrazian, Anika et al. (2018) Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner. Mol Cell Endocrinol 461:143-154
Liu, Xuxiang; Cao, Minghui; Palomares, Melanie et al. (2018) Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res 20:127
Huang, Justin K; Carlin, Daniel E; Yu, Michael Ku et al. (2018) Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. Cell Syst 6:484-495.e5
Kalyanaraman, Hema; Schwaerzer, Gerburg; Ramdani, Ghania et al. (2018) Protein Kinase G Activation Reverses Oxidative Stress and Restores Osteoblast Function and Bone Formation in Male Mice With Type 1 Diabetes. Diabetes 67:607-623

Showing the most recent 10 out of 862 publications