Pharmacokinetic studies have long been a key element of most Phase I and Phase II clinical studies.Pharmacodynamic studies and molecular correlates are now considered important components of thesestudies. With the increasing emphasis on the development of non-cytotoxic agents directed at novel targets,'correlative' studies will be essential for the interpretation of the results and, in fact, may become theprimary endpoint of the clinical studies. Therefore, the primary aim of the Analytical Pharmacology CoreFacility (APCF) is to provide support for chemotherapy trials incorporating pharmacokinetic,pharmacodynamic and other correlative laboratory studies. An additional aim is to encourage and facilitateall cancer research, including basic and translational research, by providing a range of analytical services,such as LC/MS/MS, GC/MS, HPLC, and flameless Atomic Absorption Spectrometry (AAS). Morespecifically, the APCF provides expertise and equipment for (a) sample preparation and storage, includingtissue samples for correlative studies, (b) analysis of chemotherapeutic drugs and related compounds, and(c) analysis and interpretation of pharmacokinetic and pharmacodynamic data. In addition, the APCFpersonnel provide consultation regarding appropriate analytical methods for research projects, study design,pharmacokinetic sampling schedules, and protocol review, and they collaborate in the preparation ofmanuscripts. During the 12-month reporting period, the APCF shared resource was used by 15 CancerCenter members from 4 Research Programs and one non-aligned member. Peer-reviewed usagerepresented 89% of total usage. Annual budget for this core is $292,151, of which 64% is institutionalfunding, 15% is user fees, and 21% ($60,100) is requested from the CCSG.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA033572-25
Application #
7714117
Study Section
Subcommittee G - Education (NCI)
Project Start
2008-09-01
Project End
2012-11-30
Budget Start
2008-09-01
Budget End
2008-11-30
Support Year
25
Fiscal Year
2008
Total Cost
$42,628
Indirect Cost
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Gast, Charles E; Silk, Alain D; Zarour, Luai et al. (2018) Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv 4:eaat7828
Salgia, Ravi; Kulkarni, Prakash (2018) The Genetic/Non-genetic Duality of Drug 'Resistance' in Cancer. Trends Cancer 4:110-118
Yoon, Sorah; Wu, Xiwei; Armstrong, Brian et al. (2018) An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFR? Induces Anti-tumor Effects through STAT3 and p53 in Glioblastoma. Mol Ther Nucleic Acids 14:131-141
Yim, John H; Choi, Audrey H; Li, Arthur X et al. (2018) Identification of Tissue-Specific DNA Methylation Signatures for Thyroid Nodule Diagnostics. Clin Cancer Res :
Wang, Tianyi; Fahrmann, Johannes Francois; Lee, Heehyoung et al. (2018) JAK/STAT3-Regulated Fatty Acid ?-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab 27:136-150.e5
Magilnick, Nathaniel; Boldin, Mark P (2018) Molecular Moirai: Long Noncoding RNA Mediators of HSC Fate. Curr Stem Cell Rep 4:158-165
Yun, Xinwei; Zhang, Keqiang; Wang, Jinhui et al. (2018) Targeting USP22 Suppresses Tumorigenicity and Enhances Cisplatin Sensitivity Through ALDH1A3 Downregulation in Cancer-Initiating Cells from Lung Adenocarcinoma. Mol Cancer Res 16:1161-1171
Herrera, Alex F; Rodig, Scott J; Song, Joo Y et al. (2018) Outcomes after Allogeneic Stem Cell Transplantation in Patients with Double-Hit and Double-Expressor Lymphoma. Biol Blood Marrow Transplant 24:514-520
Slavin, Thomas P; Banks, Kimberly C; Chudova, Darya et al. (2018) Identification of Incidental Germline Mutations in Patients With Advanced Solid Tumors Who Underwent Cell-Free Circulating Tumor DNA Sequencing. J Clin Oncol :JCO1800328
Shahin, Sophia A; Wang, Ruining; Simargi, Shirleen I et al. (2018) Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine 14:1381-1394

Showing the most recent 10 out of 1396 publications