The goal of the Transgenic/knock-out Mouse Core (TMC) is to produce genetically modified mice as in vivo models for exploring the normal function of genes, and the role of genetic mutations in the etiology and treatment of cancer. The range of modifications that can be introduced into the genome of the laboratory mouse include integration of exogenous DMA (transgenes) useful in gain-of-function and cell labeling, and the precise excision (knock-out) or alteration (knock-in) of gene function that can be controlled both tissuespecifically and temporally. Transgenic and knock-in/knock-out mice are often the logical extension of studies initiated in vitro, and provide a model system with greater anatomical and physiological relevance to human disease. Genetically modified mice have been essential tools in elucidating the molecular underpinnings of many types of cancer, and supplement the traditional sub-cutaneous xenograft model for testing new anti-cancer therapies. During the most recent 12-month reporting period (January 2005 to December 2005) nine Cancer Center members from 3 programs and one non-aligned member used the transgenic/knock-out mouse shared resource. The number of users with peer-reviewed funding represented 66% of users overall. Annual budget for the core is $269,657, with 68% from the institution, 13% from user fees, and 19% ($50,000) requested from the CCSG.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA033572-28
Application #
8208801
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2010-12-01
Budget End
2011-11-30
Support Year
28
Fiscal Year
2011
Total Cost
$63,610
Indirect Cost
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Gast, Charles E; Silk, Alain D; Zarour, Luai et al. (2018) Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv 4:eaat7828
Salgia, Ravi; Kulkarni, Prakash (2018) The Genetic/Non-genetic Duality of Drug 'Resistance' in Cancer. Trends Cancer 4:110-118
Yoon, Sorah; Wu, Xiwei; Armstrong, Brian et al. (2018) An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFR? Induces Anti-tumor Effects through STAT3 and p53 in Glioblastoma. Mol Ther Nucleic Acids 14:131-141
Yim, John H; Choi, Audrey H; Li, Arthur X et al. (2018) Identification of Tissue-Specific DNA Methylation Signatures for Thyroid Nodule Diagnostics. Clin Cancer Res :
Wang, Tianyi; Fahrmann, Johannes Francois; Lee, Heehyoung et al. (2018) JAK/STAT3-Regulated Fatty Acid ?-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab 27:136-150.e5
Magilnick, Nathaniel; Boldin, Mark P (2018) Molecular Moirai: Long Noncoding RNA Mediators of HSC Fate. Curr Stem Cell Rep 4:158-165
Yun, Xinwei; Zhang, Keqiang; Wang, Jinhui et al. (2018) Targeting USP22 Suppresses Tumorigenicity and Enhances Cisplatin Sensitivity Through ALDH1A3 Downregulation in Cancer-Initiating Cells from Lung Adenocarcinoma. Mol Cancer Res 16:1161-1171
Herrera, Alex F; Rodig, Scott J; Song, Joo Y et al. (2018) Outcomes after Allogeneic Stem Cell Transplantation in Patients with Double-Hit and Double-Expressor Lymphoma. Biol Blood Marrow Transplant 24:514-520
Slavin, Thomas P; Banks, Kimberly C; Chudova, Darya et al. (2018) Identification of Incidental Germline Mutations in Patients With Advanced Solid Tumors Who Underwent Cell-Free Circulating Tumor DNA Sequencing. J Clin Oncol :JCO1800328
Shahin, Sophia A; Wang, Ruining; Simargi, Shirleen I et al. (2018) Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine 14:1381-1394

Showing the most recent 10 out of 1396 publications