Drug Discovery and Structural Biology Shared Resource ABSTRACT The Drug Discovery and Structural Biology (DDSB) Core collaborates with City of Hope investigators to validate, develop, and optimize novel therapeutics. To accomplish this, the DDSB provides a comprehensive range of services spanning computational methods; high throughput screening (HTS); advanced synthetic methods to produce small molecules, peptides, and challenging oligonucleotides; and structural and biophysical methods. These services provide City of Hope Comprehensive Cancer Center (COHCCC) members with a cohesive platform to rapidly and successfully drive their therapeutic development efforts to meaningful outcomes. All major equipment and instrumentation for the DDSB is located in the Flower building. This includes an extensive array of liquid handling robots; peptide and oligonucleotide synthesizers; multiple incubators and fast protein liquid chromatography (FPLC) systems for protein production and purification; analytical instrumentation to characterize molecular interactions (surface plasmon resonance [SPR], isothermal titration calorimetry [ITC], analytical ultracentrifugation, circular dichroism [CD] with thermal control, etc.); NMR and mass spectrometers for small molecules; and equipment for macromolecular determinations (crystallization and visualization robots and a diffractometer). The DDSB core is co-directed by Drs. David Horne and John Williams, Professors in the Department of Molecular Medicine at the Beckman Research Institute at City of Hope, and supported by highly qualified staff that maintain and operate the equipment while also providing training to COHCCC researchers who wish to operate instruments independently. Oversight is provided by an interdisciplinary faculty Advisory Committee, and user feedback through an annual survey. Since the last competitive renewal, the core contributed to 219 publications by CC members, served 121 unique investigators, 100 (83%) of whom were CC members and represent all five Programs. Of the 100 CC members, 86 had peer-reviewed funding. In addition, since the last competitive renewal, the DDSB has synthesized more than 300 small molecules, 500 peptides, and 950 oligonucleotides (aptamers, GpC-conjugates, etc.). During that same period, over 450 crystallization and optimization trials were conducted, over 250 crystals were screened for diffraction, over 40 novel crystal structures/complexes were determined, and over 300 SPR experiments, 35 in silico screening/molecular dynamics projects, and 23 HTS projects were conducted. The DDSB has also developed synthetic methods and processes leading to full-scale production of complex small molecules under GMP conditions. Efforts stemming from the DDSB have led to 32 technology/patent portfolios involving 76 patents (pending and allowed), four licenses, and a substantial sponsored research agreement (>$1M).

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Roberson, Sonya
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Beckman Research Institute/City of Hope
United States
Zip Code
Bosworth, Alysia; Goodman, Elizabeth L; Wu, Eric et al. (2018) The Minneapolis-Manchester Quality of Life Instrument: reliability and validity of the Adult Form in cancer survivors. Qual Life Res 27:321-332
Vu, Binh Thanh; Shahin, Sophia Allaf; Croissant, Jonas et al. (2018) Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Sci Rep 8:8524
Ambaye, Nigus; Chen, Chih-Hong; Khanna, Swati et al. (2018) Streptonigrin Inhibits SENP1 and Reduces the Protein Level of Hypoxia-Inducible Factor 1? (HIF1?) in Cells. Biochemistry 57:1807-1813
Li, Sihui; Ali, Shafat; Duan, Xiaotao et al. (2018) JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells. Cell Rep 23:389-403
Pang, Ka Ming; Castanotto, Daniela; Li, Haitang et al. (2018) Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy. Nucleic Acids Res 46:e6
Yan, Wei; Wu, Xiwei; Zhou, Weiying et al. (2018) Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol 20:597-609
Bzymek, Krzysztof P; Puckett, James W; Zer, Cindy et al. (2018) Mechanically interlocked functionalization of monoclonal antibodies. Nat Commun 9:1580
Nguyen, Huong Q; Ruel, Nora; Macias, Mayra et al. (2018) Translation and Evaluation of a Lung Cancer, Palliative Care Intervention for Community Practice. J Pain Symptom Manage 56:709-718
Mendez-Dorantes, Carlos; Bhargava, Ragini; Stark, Jeremy M (2018) Repeat-mediated deletions can be induced by a chromosomal break far from a repeat, but multiple pathways suppress such rearrangements. Genes Dev 32:524-536
Zhang, Jing; He, Zhiheng; Sen, Subha et al. (2018) TCF-1 Inhibits IL-17 Gene Expression To Restrain Th17 Immunity in a Stage-Specific Manner. J Immunol 200:3397-3406

Showing the most recent 10 out of 1396 publications