Developmental Funds ABSTRACT The City of Hope Comprehensive Cancer Center requests CCSG developmental funds to support pilot research projects and developing an additional new shared resources to strengthen research initiatives and promote basic, translational and clinical science research activities. Funding pilot projects and developing shared resources will collectively enhance the ability of the COHCCC to serve the catchment area and mitigate the impact of cancer in the region. COHCCC believes that these activities will enable the Cancer Center to provide the optimal environment to focus the power of precision medicine, basic science inquiry, drug discovery and development, and behavioral interventions to decrease cancer incidence, morbidity, and mortality. The plan for the next funding cycle is to develop a new Multi-Scale Translational Research Core. Multi-scale modeling uses computational analysis to integrate linked measurements made at different scales of measurement (populations, individuals, microenvironment, cells, DNA/RNA/protein, and analytes). Over the past 3 years, the scope City of Hope Comprehensive Cancer Center (COHCCC) Cancer Control and Population Science (CCPS) research has expanded beyond classic epidemiologic testing of associations in large cohorts to biology-focused, translational multi-disciplinary studies that integrate multi-scale data from cohorts with mechanistic mouse-human co-studies, omics (genetics, genomics, proteomics), and analytes (drug levels, endocrine disruptors, carcinogens). The Multi-Scale Translational Research (MSTR) Core in development aims to provide services that facilitate and enhance NCI funded multi-scale research at each level of scale (zip code, individuals, microenvironment, cells, DNA/RNA/protein, and analytes). Multi-scale modeling requires integration of large data sets; to this end, the Core will provide services in data curation, annotation, validation, and assessment of rigor. To support NIH funded COHCCC multi-scale projects, the MSTR Core in development will 1) offer unique services and 2) collaborate and integrate with COHCCC Cores and Caltech, ORIONTM, and TGenTM partners. Unique services offered by the MSTR Core in development include 1) expertise in multi-scale modeling, 2) curation, annotation, and validation of the rigor, reproducibility, and accuracy of tissue, omic, and analyte data, 3) genetic admixture assessment, 4) navigation of existing COH analyte services, 4) expertise in custom tissue engineering and microenvironment studies, 5) cloud-based image storage and sharing services for national and international cohort development. The MSTR in development will deliver this wide range of services through a dedicated team of senior scientists with expertise in precision medicine, tissue engineering, genetic admixture, analyte identification, bioinformatics, and multi-scale modeling.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA033572-38
Application #
10059214
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Roberson, Sonya
Project Start
1997-08-01
Project End
2022-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
38
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Beckman Research Institute/City of Hope
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Salgia, Ravi; Kulkarni, Prakash; Gill, Prakash S (2018) EphB4: A promising target for upper aerodigestive malignancies. Biochim Biophys Acta Rev Cancer 1869:128-137
Choi, Audrey H; O'Leary, Michael P; Lu, Jianming et al. (2018) Endogenous Akt Activity Promotes Virus Entry and Predicts Efficacy of Novel Chimeric Orthopoxvirus in Triple-Negative Breast Cancer. Mol Ther Oncolytics 9:22-29
Kumar, B; Garcia, M; Weng, L et al. (2018) Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 32:575-587
Zhou, Jiehua; Lazar, Daniel; Li, Haitang et al. (2018) Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1. Theranostics 8:1575-1590
Ding, Yuan Chun; Adamson, Aaron W; Steele, Linda et al. (2018) Discovery of mutations in homologous recombination genes in African-American women with breast cancer. Fam Cancer 17:187-195
Kurata, Jessica S; Lin, Ren-Jang (2018) MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs. RNA 24:966-981
Hardwick, Nicola R; Frankel, Paul; Ruel, Christopher et al. (2018) p53-Reactive T Cells Are Associated with Clinical Benefit in Patients with Platinum-Resistant Epithelial Ovarian Cancer After Treatment with a p53 Vaccine and Gemcitabine Chemotherapy. Clin Cancer Res 24:1315-1325
Dietze, Eric C; Chavez, Tanya A; Seewaldt, Victoria L (2018) Obesity and Triple-Negative Breast Cancer: Disparities, Controversies, and Biology. Am J Pathol 188:280-290
Kingsmore, Kathryn M; Vaccari, Andrea; Abler, Daniel et al. (2018) MRI analysis to map interstitial flow in the brain tumor microenvironment. APL Bioeng 2:
Wang, Sophia S; Carrington, Mary; Berndt, Sonja I et al. (2018) HLA Class I and II Diversity Contributes to the Etiologic Heterogeneity of Non-Hodgkin Lymphoma Subtypes. Cancer Res 78:4086-4096

Showing the most recent 10 out of 1396 publications