Phenotyping Sciences provides Cancer Center faculty with diverse tools, techniques and expertise for the conduct of gene expression, molecular biology, flow cytometry, and protein chemistry methods. Created as a result of the reorganization of Scientific Services in 2004, this department comprises the former Microchemistry and Flow Cytometry Services. Microchemistry has been supported by the Cancer Center Support Grant since the Service was developed 17 years ago, while Flow Cytometry has been supported for the full 23-year term of the grant. The Phenotyping Sciences Service provides researchers with access to state-of-the-art gene expression technologies, nucleic acid isolation and quality assessment, gene targeting and transgenic construct design, protein chemistry services, advanced flow cytometric technology and a monoclonal antibody resource. Access to these services is essential to Cancer Center staff. Overall use of the Phenotyping Sciences Service has increased by 55% over the past five years. The Phenotyping Sciences Project Leader, Senior Staff Scientist Dr. Derry Roopenian, oversees this fee-for-service operation. Three gene expression technologists, two flow cytometrists, three molecular biologists, a protein chemist, and senior manager staff the facility which occupies 1,851 ft2 of laboratory space in the Research Laboratory Unit 4 building. The Service is dynamic, continuously increasing and improving its array of services to meet the needs of the Cancer Center members. Since the last renewal, significant advancements in technology have provided for the expansion and improvement of multi-color flow cytometry and sorting, gene expression microarray analysis, and multiplexed protein assay services. Phenotyping Sciences is completely integrated with the other services at the Center, including Computational Sciences, Reproductive Sciences-Cell Biology and Microinjection, and SNP Genotyping to provide a comprehensive set of support services for cancer research. Dr. Roopenian communicates with the Cancer Center users, Service staff and Center Administration to ensure that research needs are met in the most efficient, cost-effective and technically current manner.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA034196-28
Application #
8288284
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
2013-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
28
Fiscal Year
2011
Total Cost
$497,983
Indirect Cost
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Sharma, Manju; Braun, Robert E (2018) Cyclical expression of GDNF is required for spermatogonial stem cell homeostasis. Development 145:
Shi, Jiayuan; Hua, Li; Harmer, Danielle et al. (2018) Cre Driver Mice Targeting Macrophages. Methods Mol Biol 1784:263-275
Hosur, Vishnu; Farley, Michelle L; Low, Benjamin E et al. (2018) RHBDF2-Regulated Growth Factor Signaling in a Rare Human Disease, Tylosis With Esophageal Cancer: What Can We Learn From Murine Models? Front Genet 9:233
Johnson, Kenneth R; Gagnon, Leona H; Tian, Cong et al. (2018) Deletion of a Long-Range Dlx5 Enhancer Disrupts Inner Ear Development in Mice. Genetics 208:1165-1179
Dominguez, Pilar M; Ghamlouch, Hussein; Rosikiewicz, Wojciech et al. (2018) TET2 Deficiency Causes Germinal Center Hyperplasia, Impairs Plasma Cell Differentiation, and Promotes B-cell Lymphomagenesis. Cancer Discov 8:1632-1653
Paigen, Kenneth; Petkov, Petko M (2018) PRDM9 and Its Role in Genetic Recombination. Trends Genet 34:291-300
Schloss, Jennifer; Ali, Riyasat; Racine, Jeremy J et al. (2018) HLA-B*39:06 Efficiently Mediates Type 1 Diabetes in a Mouse Model Incorporating Reduced Thymic Insulin Expression. J Immunol 200:3353-3363
Nakatsuji, Teruaki; Chen, Tiffany H; Butcher, Anna M et al. (2018) A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv 4:eaao4502
Racine, Jeremy J; Stewart, Isabel; Ratiu, Jeremy et al. (2018) Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 67:923-935
Ye, Fengdan; Jia, Dongya; Lu, Mingyang et al. (2018) Modularity of the metabolic gene network as a prognostic biomarker for hepatocellular carcinoma. Oncotarget 9:15015-15026

Showing the most recent 10 out of 1156 publications