Phenotyping Technologies (PT) incorporates the Histopathology and Imaging Sciences and Flow Cytometry Service functions to deliver unparalleled access to a complete phenotyping platform. Long-established Histopathology Sciences (HPS), led by Ms. Lesley Bechtold, combines scanning and transmission electron microscopy technologies, histology, and clinical assessment. The seven full-time ASCP-certified histotechnologists [HT (ASCP)] provide a comprehensive resource for preparation and morphological analysis of specimens. These Staff deliver tissue processing, paraffin and plastic embedding, cryoembedding and step, serial and cryo-sectioning;the service supports over 135 special stains and delivers immunohistochemistry services. Two full-time employees (FTE) deliver clinical chemistry and hematology analysis. Two full-time electron microscopists deliver specimen processing and preparation for examination by transmission and scanning electron microscopy;custom protocol development and consultative services are also available. Led by Dr. James Denegre, the Imaging Sciences component of the Phenotyping Technologies group delivers Light and Confocal Microscopy, Cytogenetics and Flow Cytometry Services, three Microscopy FTE provide extensive wide-field, confocal, laser-capture, image analysis and cytogenetics offerings. Instruments include two confocal microscopes, three wide field fluorescent microscopes, two stereo scopes (one of which is equipped for fluorescence), a digital pathology slide scanner, a spectral karyotyping system, and a 4Pi microscope. The Flow Cytometry function, staffed by two experienced cytometrists, is equipped with five analytical cytometers, one sorting cytometer, one imaging cytometer and a magnetic cell sorter as well as analytical workstations. Comprehensive training is provided for all microscopy and cytometry platforms, enabling authorized users independent operational access 24- hours-a-day. All Staff offer experimental design consultation, sample preparation, data acquisifion and analysis services. Advanced training is also provided through Service facilitated seminars. An extensive antibody reagent repository for flow and microscopy applications is maintained by the core. Users can work with facility staff to develop and execute analytical routines using workstations within the facility, and staff also develop scripts for automation of image analysis tasks. Collectively these highly interactive services offer JAX Cancer Center members a comprehensive platform for the characterization of phenotypes and assessment of experimentally manipulated animal models.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA034196-29
Application #
8699308
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
29
Fiscal Year
2014
Total Cost
$181,942
Indirect Cost
$77,975
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Ye, Fengdan; Jia, Dongya; Lu, Mingyang et al. (2018) Modularity of the metabolic gene network as a prognostic biomarker for hepatocellular carcinoma. Oncotarget 9:15015-15026
Kong, Yang; Zhao, Lihong; Charette, Jeremy R et al. (2018) An FRMD4B variant suppresses dysplastic photoreceptor lesions in models of enhanced S-cone syndrome and of Nrl deficiency. Hum Mol Genet 27:3340-3352
Wu, Te-Chia; Xu, Kangling; Martinek, Jan et al. (2018) IL1 Receptor Antagonist Controls Transcriptional Signature of Inflammation in Patients with Metastatic Breast Cancer. Cancer Res 78:5243-5258
Muscat, Andrea M; Wong, Nicholas C; Drummond, Katharine J et al. (2018) The evolutionary pattern of mutations in glioblastoma reveals therapy-mediated selection. Oncotarget 9:7844-7858
Kohar, Vivek; Lu, Mingyang (2018) Role of noise and parametric variation in the dynamics of gene regulatory circuits. NPJ Syst Biol Appl 4:40
NĂ©bor, Danitza; Graber, Joel H; Ciciotte, Steven L et al. (2018) Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. Sci Rep 8:12793
Linn, Sarah C; Mustonen, Allison M; Silva, Kathleen A et al. (2018) Nail abnormalities identified in an ageing study of 30 inbred mouse strains. Exp Dermatol :
Hosur, Vishnu; Farley, Michelle L; Burzenski, Lisa M et al. (2018) ADAM17 is essential for ectodomain shedding of the EGF-receptor ligand amphiregulin. FEBS Open Bio 8:702-710
Becker, Timothy; Lee, Wan-Ping; Leone, Joseph et al. (2018) FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods. Genome Biol 19:38
Wang, Qianghu; Hu, Baoli; Hu, Xin et al. (2018) Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell 33:152

Showing the most recent 10 out of 1156 publications