The Flow Cytometry Shared Resource provides Cancer Center members doing both basic research and clinical studies with the opportunity to measure a wide variety of cellular parameters such as: antigen expression/quantitation, DNA content/cell cycle status, reporter gene expression and functional attributes of cells (i.e. Intracellular pH, Ca++ flux, redox status, membrane potential, etc.). Because these parameters are measured on a single cell basis, one can determine population heterogeneity as well as physically sort out cells of interest- based on their expression of any of the above parameters-for further investigation. These capabilities allow the precise characterization and isolation of cells from in vitro experimental protocols or from patient specimens, so that they can be further studied in the research laboratory. In addition to providing direct cytometric services, the facility also provides training for students, technologists, fellows and principal investigators in the use of flow cytometry (both from the theoretical standpoint and in the actual operation of the equipment). The Facility Supervisor provides consultation to Cancer Center members who are designing experiments or proposing the use of flow cytometry in a grant application. The facility is staffed by a director and two technologists, providing full service Monday through Friday. Additionally, individuals trained to operate the equipment themselves have access to the facility at any time, 7 days a week.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA042014-14
Application #
6484689
Study Section
Project Start
2001-08-03
Project End
2002-04-30
Budget Start
Budget End
Support Year
14
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Utah
Department
Type
DUNS #
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Fleming, Aaron M; Zhu, Judy; Ding, Yun et al. (2018) Human DNA Repair Genes Possess Potential G-Quadruplex Sequences in Their Promoters and 5'-Untranslated Regions. Biochemistry 57:991-1002
Hellwig, Sabine; Nix, David A; Gligorich, Keith M et al. (2018) Automated size selection for short cell-free DNA fragments enriches for circulating tumor DNA and improves error correction during next generation sequencing. PLoS One 13:e0197333
Martin, Christopher; Leiser, Claire L; O'Neil, Brock et al. (2018) Familial Cancer Clustering in Urothelial Cancer: A Population-Based Case-Control Study. J Natl Cancer Inst 110:527-533
Mollaoglu, Gurkan; Jones, Alex; Wait, Sarah J et al. (2018) The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity 49:764-779.e9
Sorenson, Reed S; Deshotel, Malia J; Johnson, Katrina et al. (2018) Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. Proc Natl Acad Sci U S A 115:E1485-E1494
Polanco, Edward R; Western, Nicholas; Zangle, Thomas A (2018) Fabrication of Refractive-index-matched Devices for Biomedical Microfluidics. J Vis Exp :
Camolotto, Soledad A; Pattabiraman, Shrivatsav; Mosbruger, Timothy L et al. (2018) FoxA1 and FoxA2 drive gastric differentiation and suppress squamous identity in NKX2-1-negative lung cancer. Elife 7:
Nevala-Plagemann, Christopher; Francis, Samual; Cavalieri, Courtney et al. (2018) Benefit of adjuvant chemotherapy based on lymph node involvement for oesophageal cancer following trimodality therapy. ESMO Open 3:e000386
Li, Lian; Yang, Jiyuan; Wang, Jiawei et al. (2018) Amplification of CD20 Cross-Linking in Rituximab-Resistant B-Lymphoma Cells Enhances Apoptosis Induction by Drug-Free Macromolecular Therapeutics. ACS Nano 12:3658-3670
Wu, Yelena P; Nagelhout, Elizabeth; Aspinwall, Lisa G et al. (2018) A novel educational intervention targeting melanoma risk and prevention knowledge among children with a familial risk for melanoma. Patient Educ Couns 101:452-459

Showing the most recent 10 out of 1193 publications