The Proteomics Core Facility makes advanced mass spectrometry instruments, expertise, and methods for protein analysis available to the Case Comprehensive Cancer Center (Case CCC) community. The Core includes two laboratory sites, one on the CWRU campus and one the CCF campus, with a current total of 6,000 sq ft of laboratory space. The Core is directed by Dr. Mark Chance and has a staff of approximately 20 individuals including scientists specializing in mass spectrometry, protein chemistry, instrument engineering, and bioinformatics. A total of 8 mass spectrometry systems are housed in the laboratories, including electrospray and Maldi, and ion trap, ToF, QTof, and FTMS systems. The services that are offered to the Case CCC community are wide-ranging;from a drop-off service for protein identification, to collaborative services for the detection and characterization of post-translation modifications, quantitative proteomics, and protein structural analyses to open instrument access for trained users. Members have used mass spectrometry from the Core, to reveal that the reversible dimethylation on K140 by histone-modifying enzymes occurs only when it is part of a promoter-bound complex. Other members have utilized the Core to identify DNMT1-associated proteins including HAUSP from a series of pull down experiments. In particular, in-solution samples generated from pull down experiments were analyzed by tandem MS. The Core has provided services for Cancer Center members from 7 of the 8 Scientific Research Programs.

Public Health Relevance

The Case Comprehensive Cancer Center is Northeast Ohio's only NCI designated comprehensive cancer center providing bench-to-bedside medical research Involving partnerships between basic, clinical and population scientists to speed translation of laboratory discoveries into new prevention/intervention and cancer treatments.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA043703-24
Application #
8765393
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
24
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Case Western Reserve University
Department
Type
DUNS #
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Qiu, Zhaojun; Oleinick, Nancy L; Zhang, Junran (2018) ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 126:450-464
Elitt, Matthew S; Shick, H Elizabeth; Madhavan, Mayur et al. (2018) Chemical Screening Identifies Enhancers of Mutant Oligodendrocyte Survival and Unmasks a Distinct Pathological Phase in Pelizaeus-Merzbacher Disease. Stem Cell Reports 11:711-726
He, Tian; McColl, Karen; Sakre, Nneha et al. (2018) Post-transcriptional regulation of PIAS3 expression by miR-18a in malignant mesothelioma. Mol Oncol 12:2124-2135
Roche, Kathryn L; Nukui, Masatoshi; Krishna, Benjamin A et al. (2018) Selective 4-Thiouracil Labeling of RNA Transcripts within Latently Infected Cells after Infection with Human Cytomegalovirus Expressing Functional Uracil Phosphoribosyltransferase. J Virol 92:
Bedell, Hillary W; Hermann, John K; Ravikumar, Madhumitha et al. (2018) Targeting CD14 on blood derived cells improves intracortical microelectrode performance. Biomaterials 163:163-173
Nagaraj, A B; Wang, Q Q; Joseph, P et al. (2018) Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Oncogene 37:403-414
Somasegar, Sahana; Li, Li; Thompson, Cheryl L (2018) No association of reproductive risk factors with breast cancer tumor grade. Eur J Cancer Prev 27:140-143
Gu, Xiaorong; Ebrahem, Quteba; Mahfouz, Reda Z et al. (2018) Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. J Clin Invest 128:4260-4279
Benson, Bryan L; Li, Lucy; Myers, Jay T et al. (2018) Biomimetic post-capillary venule expansions for leukocyte adhesion studies. Sci Rep 8:9328
Bosca, Federica; Bielecki, Peter A; Exner, Agata A et al. (2018) Porphyrin-Loaded Pluronic Nanobubbles: A New US-Activated Agent for Future Theranostic Applications. Bioconjug Chem 29:234-240

Showing the most recent 10 out of 1227 publications