The Tissue Procurement Facility (TPF) was established in 1993 to support research using human tissue. There is limited availability of matched malignant and normal human tissues paired with vital clinical information from national distribution labs. The TPF was established with support from the Institution and from the Cancer Center. Since its inception, there has been a continued increase in the collection and distribution of these tissues to researchers at the University. The Tissue Procurement Facility performed 3 main functions at the time of the last grant review: (1) collection of matched tumor and normal tissues; (2) preservation and storage of tissue in either quick-frozen tissue fragments or viable cryopreserved cell suspensions; (3) collection and distribution of clinical data pertaining to specimens. Since the last renewal, the Facility has added a number of new services: (4) providing informed consenting services to investigators for blood or tissue collection; (5) isolation and cryopreservation of peripheral blood lymphocytes from whole blood; (6) tissue banking for future uses that may not be defined at present; and (7) histologic services that provide routine quality assurance studies on all tissue specimens collected. With regard to the last service, the TPF has recently initiated a collaboration and staff sharing agreement with the University of Virginia's laboratory of NIH-funded Cooperative Human Tissue Network (CHTN). This provides greater staff support from surgical pathology services and facilitates the histologic assessment of tissue samples. Presently the Facility actively collects tissue to support 28 different protocols here at the University, representing the work of 21 different researchers in 12 different departments. Currently 98% of the use of the core is by Cancer Center investigators.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-18
Application #
7726789
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2008-02-01
Budget End
2009-01-31
Support Year
18
Fiscal Year
2008
Total Cost
$61,177
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Cruickshanks, Nichola; Zhang, Ying; Hine, Sarah et al. (2018) Discovery and Therapeutic Exploitation of Mechanisms of Resistance to MET Inhibitors in Glioblastoma. Clin Cancer Res :
Balogh, Kristen N; Templeton, Dennis J; Cross, Janet V (2018) Macrophage Migration Inhibitory Factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses. PLoS One 13:e0197702
Gonzalez, Phillippe P; Kim, Jungeun; Galvao, Rui Pedro et al. (2018) p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression. Glia 66:999-1015
Rodriguez, Anthony B; Peske, J David; Engelhard, Victor H (2018) Identification and Characterization of Tertiary Lymphoid Structures in Murine Melanoma. Methods Mol Biol 1845:241-257
Stowman, Anne M; Hickman, Alexandra W; Mauldin, Ileana S et al. (2018) Lymphoid aggregates in desmoplastic melanoma have features of tertiary lymphoid structures. Melanoma Res 28:237-245
Melhuish, Tiffany A; Kowalczyk, Izabela; Manukyan, Arkadi et al. (2018) Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression. Biochim Biophys Acta Gene Regul Mech 1861:983-995
Kulling, Paige M; Olson, Kristine C; Olson, Thomas L et al. (2018) Calcitriol-mediated reduction in IFN-? output in T cell large granular lymphocytic leukemia requires vitamin D receptor upregulation. J Steroid Biochem Mol Biol 177:140-148
Carlton, Anne L; Illendula, Anuradha; Gao, Yan et al. (2018) Small molecule inhibition of the CBF?/RUNX interaction decreases ovarian cancer growth and migration through alterations in genes related to epithelial-to-mesenchymal transition. Gynecol Oncol 149:350-360
Borten, Michael A; Bajikar, Sameer S; Sasaki, Nobuo et al. (2018) Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Sci Rep 8:5319
Olson, Kristine C; Kulling Larkin, Paige M; Signorelli, Rossana et al. (2018) Vitamin D pathway activation selectively deactivates signal transducer and activator of transcription (STAT) proteins and inflammatory cytokine production in natural killer leukemic large granular lymphocytes. Cytokine 111:551-562

Showing the most recent 10 out of 539 publications