Pilot Projects and Infrastructure. We are requesting $150,000/year to support 3-5 pilot projects for 1-2 years at an annual cost of $25,000 - $50,000 per investigator. This is an amount and time sufficient for an investigator to mount a truly new initiative and obtain sufficient preliminary data for an NCI grant application or a Clinical Trial. Smaller amounts of money, in our experience, permit only an incremental extension of on-going work. Although a budget breakdown would vary considerably from one project to another, depending on the nature of the research, these funds would typically cover personnel costs of a post-doc or technician at 50 -100% time, plus supplies and animals. Requests for new or improved infrastructure are generally handled through the Pilot Project process, and are weighed against the opportunities for new research initiatives. No faculty salaries are supported with Pilot Project monies. We will use institutional and philanthropic funds totaling $350,000 to bring the total funding base for internal pilot projects and infrastructure to $500,000. This is more than a 2 to 1 matching of the CCSG pilot funds with philanthropic funds. Our ability to raise these philanthropic funds is explicitly based on leveraging the investment made by the NCI in this activity, through the allocation of Developmental funding. Our experience has been that the NCI funding provides credibility for philanthropists, and that donors are more willing to provide research support when it is on top of an NCI investment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-19
Application #
7771651
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2009-02-01
Budget End
2010-01-31
Support Year
19
Fiscal Year
2009
Total Cost
$205,461
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Wallrabe, Horst; Svindrych, Zdenek; Alam, Shagufta R et al. (2018) Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Sci Rep 8:79
Olmez, Inan; Love, Shawn; Xiao, Aizhen et al. (2018) Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro Oncol 20:192-202
Wang, T Tiffany; Yang, Jun; Zhang, Yong et al. (2018) IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective ?-chain cytokines, decreases leukemic T-cell viability. Leukemia :
Yao, Nengliang; Zhu, Xi; Dow, Alan et al. (2018) An exploratory study of networks constructed using access data from an electronic health record. J Interprof Care :1-8
Kiran, Shashi; Dar, Ashraf; Singh, Samarendra K et al. (2018) The Deubiquitinase USP46 Is Essential for Proliferation and Tumor Growth of HPV-Transformed Cancers. Mol Cell 72:823-835.e5
Conaway, Mark R; Petroni, Gina R (2018) The Impact of Early-Phase Trial Design in the Drug Development Process. Clin Cancer Res :
Szlachta, Karol; Kuscu, Cem; Tufan, Turan et al. (2018) CRISPR knockout screening identifies combinatorial drug targets in pancreatic cancer and models cellular drug response. Nat Commun 9:4275
Khalil, Shadi; Delehanty, Lorrie; Grado, Stephen et al. (2018) Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J Exp Med 215:661-679
Olmez, Inan; Zhang, Ying; Manigat, Laryssa et al. (2018) Combined c-Met/Trk Inhibition Overcomes Resistance to CDK4/6 Inhibitors in Glioblastoma. Cancer Res 78:4360-4369
Parini, Paolo; Melhuish, Tiffany A; Wotton, David et al. (2018) Overexpression of transforming growth factor ? induced factor homeobox 1 represses NPC1L1 and lowers markers of intestinal cholesterol absorption. Atherosclerosis 275:246-255

Showing the most recent 10 out of 539 publications