The W.M. Keck Biomedical Mass Spectrometry Lab is dedicated to providing access to state of the art mass Spectrometry instrumentation and highly trained personnel. The facility currently has a time-of-flight mass spectrometer (ABI Voyager DE-Pro) equipped with a MALDI source (MALDI-TOF) for high accuracy mass measurement of peptides and small molecules as well as detection of intact proteins up to ~150 kDa. In addition, one ion trap and one hybrid ion trap-FTICR each equipped with microspray sources (Thermo Electron LCQ DecaXP and LTQ-FT) provide detailed information on proteins such as identification, relative quantitation, and post-translational modification discovery. In particular, the FTICR is capable of high resolution/mass accuracy at ultra-high sensitivity. For larger numbers of samples, the facility has 96-well format automated equipment such as the Genomic Solutions ProGest (sample digestion) and the Genomic Solutions ProMS (sample processing for peptide mass fingerprinting). The critical mission of the facility is to provide Cancer Center investigators with expertise in pre-experiment planning, data acquisition, and data interpretation for a wide variety of experimental questions ranging from basic science to clinical applications. This 'start to finish'guidance provides investigators with interactions critical to experimental success and is not often found at other facilities. Lab personnel also give periodic lectures to the university community to keep investigators apprized of currently available instrumentation and techniques and to keep themselves current on the types of questions Cancer Center members would like to address in their research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-20
Application #
8104151
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2010-02-01
Budget End
2011-01-31
Support Year
20
Fiscal Year
2010
Total Cost
$91,577
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Manukyan, Arkadi; Kowalczyk, Izabela; Melhuish, Tiffany A et al. (2018) Analysis of transcriptional activity by the Myt1 and Myt1l transcription factors. J Cell Biochem 119:4644-4655
Engelhard, Victor H; Rodriguez, Anthony B; Mauldin, Ileana S et al. (2018) Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity. J Immunol 200:432-442
Martins, André L; Walavalkar, Ninad M; Anderson, Warren D et al. (2018) Universal correction of enzymatic sequence bias reveals molecular signatures of protein/DNA interactions. Nucleic Acids Res 46:e9
Michaels, Alex D; Newhook, Timothy E; Adair, Sara J et al. (2018) CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clin Cancer Res 24:1415-1425
Shi, Lei; Li, Kang; Guo, Yizhan et al. (2018) Modulation of NKG2D, NKp46, and Ly49C/I facilitates natural killer cell-mediated control of lung cancer. Proc Natl Acad Sci U S A 115:11808-11813
Yang, Jun; LeBlanc, Francis R; Dighe, Shubha A et al. (2018) TRAIL mediates and sustains constitutive NF-?B activation in LGL leukemia. Blood 131:2803-2815
Kulling, Paige M; Olson, Kristine C; Hamele, Cait E et al. (2018) Dysregulation of the IFN-?-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS One 13:e0193429
Grant, Margaret J; Loftus, Matthew S; Stoja, Aiola P et al. (2018) Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether. Proc Natl Acad Sci U S A 115:4992-4997
Knapp, Kiley A; Pires, Eusebio S; Adair, Sara J et al. (2018) Evaluation of SAS1B as a target for antibody-drug conjugate therapy in the treatment of pancreatic cancer. Oncotarget 9:8972-8984
Zhang, Xuewei; Kitatani, Kazuyuki; Toyoshima, Masafumi et al. (2018) Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer. Mol Cancer Ther 17:50-59

Showing the most recent 10 out of 539 publications