The Advanced Microscopy Facility was established in 1979 and has, since the first Cancer Center Support Grant to the University of Virginia in 1987, provided Cancer Center investigators with unique access to instrumentation and services for critical investigations regarding the cause, spread, and treatment of cancer Access to cutting edge microscopy equipment at the AMF has allowed Cancer Center members specifically to elucidate the role of PK1 in cytokinesis, to identify a role for the tumor suppressor APC in mRNA localization, to further define the role of SCAMPS in regulation of cell proliferation, and to identify some of the factors involved in the organization and orientation of epithelial cells, all of which are critical cell functions that play pivotal roles in the development and spread of cancer. The facility, which is both a full-service and a user-facility, has been expanded from primarily an electron microscopy center to encompass a full range of light and electron microscopy technologies. This expansion includes the acquisition of four confocal microscopes and one transmission electron microscope, and relocation of the facility to renovated quarters, doubling the previous laboratory space. The primary objective of the facility is to provide investigators access to, and assistance with, state-of-the art confocal and electron microscopes, preparatory equipment, and applications. An ongoing emphasis of this Shared Resource is to provide facilities for the manipulation and imaging of live cells, and to track the dynamics of fluorophores in cells under physiological conditions. Within this overall framework, related objectives include: (1) providing consultation on research objectives which employ electron and light microscopy methods;(2) assuring that up-to-date equipment is available and properly maintained for use by investigators;(3) providing complete electron microscopy specimen preparation services;(4) educating and training clients in the use of equipment or specialized techniques;and (5) monitoring developments in the field of microscopy that might be incorporated into the services offered by the facility.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-23
Application #
8635291
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
23
Fiscal Year
2014
Total Cost
$14,019
Indirect Cost
$6,552
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Borten, Michael A; Bajikar, Sameer S; Sasaki, Nobuo et al. (2018) Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Sci Rep 8:5319
Olson, Kristine C; Kulling Larkin, Paige M; Signorelli, Rossana et al. (2018) Vitamin D pathway activation selectively deactivates signal transducer and activator of transcription (STAT) proteins and inflammatory cytokine production in natural killer leukemic large granular lymphocytes. Cytokine 111:551-562
Pfister, Katherine; Pipka, Justyna L; Chiang, Colby et al. (2018) Identification of Drivers of Aneuploidy in Breast Tumors. Cell Rep 23:2758-2769
Carhart, Miev Y; Schminkey, Donna L; Mitchell, Emma M et al. (2018) Barriers and Facilitators to Improving Virginia's HPV Vaccination Rate: A Stakeholder Analysis With Implications for Pediatric Nurses. J Pediatr Nurs 42:1-8
Hao, Yi; Bjerke, Glen A; Pietrzak, Karolina et al. (2018) TGF? signaling limits lineage plasticity in prostate cancer. PLoS Genet 14:e1007409
Obeid, Joseph M; Kunk, Paul R; Zaydfudim, Victor M et al. (2018) Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time? Cancer Immunol Immunother 67:161-174
Wallrabe, Horst; Svindrych, Zdenek; Alam, Shagufta R et al. (2018) Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Sci Rep 8:79
Olmez, Inan; Love, Shawn; Xiao, Aizhen et al. (2018) Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro Oncol 20:192-202
Wang, T Tiffany; Yang, Jun; Zhang, Yong et al. (2018) IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective ?-chain cytokines, decreases leukemic T-cell viability. Leukemia :
Yao, Nengliang; Zhu, Xi; Dow, Alan et al. (2018) An exploratory study of networks constructed using access data from an electronic health record. J Interprof Care :1-8

Showing the most recent 10 out of 539 publications