Detailed understanding of molecular function in biological systems requires information about the 3D structures of macromolecules. The wealth of information available from such studies provides novel and powerful insights into function. Chemical biology, the modulation of protein function by small molecules, provides tool compounds to explore biological function as well as novel therapeutics for the clinic. The tools of imaging, detection, and drug delivery emerge from chemical biology efforts. The merging of the structural biology and chemical biology faculty brings together two groups that speak the same language, the language of molecular structure, making this a natural grouping. The overarching goal of the Chemical & Structural Biology (CSB) Program is to facilitate this dialogue in ways that accelerate understanding, detection, and treatment of cancer. The Program leader is John H. Bushweller, PhD, Professor of Molecular Physiology and Biological Physics, and the co-leader is Kevin R. Lynch, PhD, Professor of Pharmacology and Biochemistry & Molecular Genetics. The Program currently consists of 23 members and 6 associate members from seven different departments spanning three different schools at UVA. This includes the Chemistry Department, providing unique cross- campus opportunities to bring the power of chemistry to bear on cancer. Six of these individuals were recruited to UVA since the last renewal. Total extramural funding for the Program exceeds $12M, including over $2.4M from the NCI and over $8.7M from other NIH institutes. The group members rely heavily on Cancer Center supported infrastructure, particularly the Biomolecular Analysis Core and NMR instrumentation. Pilot grant support of CSB members has shown a clear return on investment with several NCI funded grants emerging from work supported originally with pilot grant support. The many activities and interactions have led to 276 publications, of which 18% were inter-programmatic publications and 18% were intra-programmatic publications since the last renewal.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-28
Application #
9626884
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
28
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Knapp, Kiley A; Pires, Eusebio S; Adair, Sara J et al. (2018) Evaluation of SAS1B as a target for antibody-drug conjugate therapy in the treatment of pancreatic cancer. Oncotarget 9:8972-8984
Kedzierska, Katarzyna Z; Gerber, Livia; Cagnazzi, Daniele et al. (2018) SONiCS: PCR stutter noise correction in genome-scale microsatellites. Bioinformatics 34:4115-4117
Zhang, Xuewei; Kitatani, Kazuyuki; Toyoshima, Masafumi et al. (2018) Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer. Mol Cancer Ther 17:50-59
Cruickshanks, Nichola; Zhang, Ying; Hine, Sarah et al. (2018) Discovery and Therapeutic Exploitation of Mechanisms of Resistance to MET Inhibitors in Glioblastoma. Clin Cancer Res :
Balogh, Kristen N; Templeton, Dennis J; Cross, Janet V (2018) Macrophage Migration Inhibitory Factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses. PLoS One 13:e0197702
Gonzalez, Phillippe P; Kim, Jungeun; Galvao, Rui Pedro et al. (2018) p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression. Glia 66:999-1015
Rodriguez, Anthony B; Peske, J David; Engelhard, Victor H (2018) Identification and Characterization of Tertiary Lymphoid Structures in Murine Melanoma. Methods Mol Biol 1845:241-257
Stowman, Anne M; Hickman, Alexandra W; Mauldin, Ileana S et al. (2018) Lymphoid aggregates in desmoplastic melanoma have features of tertiary lymphoid structures. Melanoma Res 28:237-245
Melhuish, Tiffany A; Kowalczyk, Izabela; Manukyan, Arkadi et al. (2018) Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression. Biochim Biophys Acta Gene Regul Mech 1861:983-995
Kulling, Paige M; Olson, Kristine C; Olson, Thomas L et al. (2018) Calcitriol-mediated reduction in IFN-? output in T cell large granular lymphocytic leukemia requires vitamin D receptor upregulation. J Steroid Biochem Mol Biol 177:140-148

Showing the most recent 10 out of 539 publications