The Biomolecular Analysis Facility (BAF) provides a centralized setting for a diverse but interactive suite of services, instrumentation, and expertise in the areas of genomics, transcriptomics, proteomics, metabolomics, lipidomics, and molecular interactions. BAF research services have been provided to the Cancer Center for nearly 20 years, with recent additions addressing new areas of investigator need identified by the Cancer Center Executive Committee. The highly skilled staff has the necessary expertise to provide Cancer Center members with not only rapid, high quality data but also with pre- and post-experiment consultation necessary for successful experiments. This complete approach to service gives investigators confidence in their work leading to publications and additional grants. The labs, instruments, and personnel of the BAF are all located on the first floor of Jordan Hall allowing Cancer Center members to easily utilize and integrate multiple `omics' techniques in their research. In addition, the BAF has significant ties to other Cancer Center shared resources such as Flow Cytometry, Biorepository and Tissue Research Facility, Animal Models of Disease, and Advanced Microscopy Facility. In some cases, these facilities provide the samples/material utilized in the BAF while in others they use BAF-generated results to initiate further research experiments. One key area of focus within the BAF is providing access to advanced instrumentation and experiments that meet Cancer Center needs. Within the past year, the facility has added two mass spectrometers in the area of lipidomics and metabolomics and an instrument capable of measuring molecular interactions. As the majority of BAF users are Cancer Center members, the interaction with these investigators is the driving force for acquisition of new instrumentation and development of new techniques. The Cancer Center Executive Committee and Office of Research Core Administration (ORCA ? within School of Medicine Dean's Office) work closely together to foster this environment. To that end the School of Medicine provides direct budget support to the BAF every year (~30% total budget). When the Cancer Center co-pay is combined with the School of Medicine's support, Cancer Center Members receive highly effective services at a price that makes more experiments possible.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-30
Application #
10091428
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-09-16
Project End
2022-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
30
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Manukyan, Arkadi; Kowalczyk, Izabela; Melhuish, Tiffany A et al. (2018) Analysis of transcriptional activity by the Myt1 and Myt1l transcription factors. J Cell Biochem 119:4644-4655
Engelhard, Victor H; Rodriguez, Anthony B; Mauldin, Ileana S et al. (2018) Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity. J Immunol 200:432-442
Martins, André L; Walavalkar, Ninad M; Anderson, Warren D et al. (2018) Universal correction of enzymatic sequence bias reveals molecular signatures of protein/DNA interactions. Nucleic Acids Res 46:e9
Michaels, Alex D; Newhook, Timothy E; Adair, Sara J et al. (2018) CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clin Cancer Res 24:1415-1425
Shi, Lei; Li, Kang; Guo, Yizhan et al. (2018) Modulation of NKG2D, NKp46, and Ly49C/I facilitates natural killer cell-mediated control of lung cancer. Proc Natl Acad Sci U S A 115:11808-11813
Yang, Jun; LeBlanc, Francis R; Dighe, Shubha A et al. (2018) TRAIL mediates and sustains constitutive NF-?B activation in LGL leukemia. Blood 131:2803-2815
Kulling, Paige M; Olson, Kristine C; Hamele, Cait E et al. (2018) Dysregulation of the IFN-?-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS One 13:e0193429
Grant, Margaret J; Loftus, Matthew S; Stoja, Aiola P et al. (2018) Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether. Proc Natl Acad Sci U S A 115:4992-4997
Knapp, Kiley A; Pires, Eusebio S; Adair, Sara J et al. (2018) Evaluation of SAS1B as a target for antibody-drug conjugate therapy in the treatment of pancreatic cancer. Oncotarget 9:8972-8984
Zhang, Xuewei; Kitatani, Kazuyuki; Toyoshima, Masafumi et al. (2018) Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer. Mol Cancer Ther 17:50-59

Showing the most recent 10 out of 539 publications