The Cold Spring Harbor Laboratory (CSHL) Cancer Center (www.cshl.edu/cancercenter) is a vibrant and dynamic cancer research center that strives for excellence. Researchers are committed to using a focused, multidisciplinary and collaborative approach to investigate the molecular cellular basis of human cancer with the goal of improving diagnosis and treatment of ail major forms ofthe disease. The CSHL Cancer Center is organized into three Scientific Programs. The Gene Expression &Cell Proliferation Program focuses on the regulation of gene expression, cell division cycle control and chromosome structure, comparing normal and cancer cells with a goal to identify new therapeutic targets. The Signal Transduction Program focuses on signal transduction pathways and cell architecture in normal and cancer cells, with a growing emphasis on tumor micro-environment and understanding mechanisms of resistance to targeted therapies. The Cancer Genetics Program focuses on understanding the genetic basis of cancer, tumor progression and discovery of new targets for therapy using innovative mouse models for human cancer. In addition, the CSHL Cancer Center supports ten scientific shared resources. These shared resources provide access to technologies, products, services and expertise that promote multidisciplinary interactions and collaborations among CSHL researchers and programs. Importantly, the shared resources increase productivity, provide economies of scale, decrease wasteful duplication of resources, maintain quality control, and facilitate access to expensive equipment and highly skilled technical services. In the last five years, the CSHL Cancer Center not only broke new ground in understanding cancer genetics and tumor biology, but also achieved its vision of a cancer discovery pipeline that integrates complex cellular processes and pathways in tumor cells with cell biology and biochemistry, human cancer genetics, RNAi technology and innovative animal models that mimic different subsets of human cancers. The pipeline has generated a wealth of pre-clinical data including information on new cancer genes and diagnostic tools, has identified potential new therapeutic targets, has investigated new biochemical pathways, and studied drug resistance mechanisms.
Despite the discovery of targeted therapies that cure or control some cancer types, cancer remains one of the major causes of death in the US. The focus of the Cold Spring Harbor Laboratory Cancer Center is to understand the underlying genetic and cellular basis for the disease and to discover new, targeted and safe cancer therapies that are linked to the patient's tumor genetics.
Kumar, Vijay; Rosenbaum, Julie; Wang, Zihua et al. (2018) Partial bisulfite conversion for unique template sequencing. Nucleic Acids Res 46:e10 |
Lee, Je H (2018) Tracing single-cell histories. Science 359:521-522 |
Alexander, Joan; Kendall, Jude; McIndoo, Jean et al. (2018) Utility of Single-Cell Genomics in Diagnostic Evaluation of Prostate Cancer. Cancer Res 78:348-358 |
Huang, Yu-Han; Klingbeil, Olaf; He, Xue-Yan et al. (2018) POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev 32:915-928 |
Tiriac, Hervé; Belleau, Pascal; Engle, Dannielle D et al. (2018) Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov 8:1112-1129 |
Naguib, Adam; Mathew, Grinu; Reczek, Colleen R et al. (2018) Mitochondrial Complex I Inhibitors Expose a Vulnerability for Selective Killing of Pten-Null Cells. Cell Rep 23:58-67 |
Forcier, Talitha L; Ayaz, Andalus; Gill, Manraj S et al. (2018) Measuring cis-regulatory energetics in living cells using allelic manifolds. Elife 7: |
Bhagwat, Anand S; Lu, Bin; Vakoc, Christopher R (2018) Enhancer dysfunction in leukemia. Blood 131:1795-1804 |
Aberle, M R; Burkhart, R A; Tiriac, H et al. (2018) Patient-derived organoid models help define personalized management of gastrointestinal cancer. Br J Surg 105:e48-e60 |
Chen, Wei-Chia; Tareen, Ammar; Kinney, Justin B (2018) Density Estimation on Small Data Sets. Phys Rev Lett 121:160605 |
Showing the most recent 10 out of 380 publications