Few investigators know how to prepare and use recombinant vectors and many of the techniques required for the use of these reagents are specialized, expensive and difficult to learn without assistance. In addition the manufacture of these reagents must be performed in laboratory space that has been specifically configured in order to comply with biological containment guidelines. Many times the requirements for these biosafety guidelines would inhibit many investigators form pursuing the use of these valuable reagents. The specific objectives of the Vector Core are to: Provide a Core laboratory for the construction, purification and characterization of recombinant vectors containing genes relevant to the study of cancer disease models for use as in vitro and in vivo gene transfer reagents. These systems include both non-viral (expression plasmid) and viral (recombinant retrovirus and recombinant retrovirus and recombinant adenovirus) technologies; Institute the use of additional viral vector systems (such as AAV and gutted adenovirus) and provide them to Cancer Center investigators as standard services; Provide Cancer Investigators access to gene transfer technologies in an efficient and user-friendly manner; Provide services at a reduced at a reduced cost to Cancer Center investigators through the use of a recharge subsidized by the project award.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA046592-15
Application #
6597025
Study Section
Project Start
2002-06-01
Project End
2003-05-31
Budget Start
Budget End
Support Year
15
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Haley, Henry R; Shen, Nathan; Qyli, Tonela et al. (2018) Enhanced Bone Metastases in Skeletally Immature Mice. Tomography 4:84-93
Fritsche, Lars G; Gruber, Stephen B; Wu, Zhenke et al. (2018) Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative. Am J Hum Genet 102:1048-1061
Giordano, Thomas J (2018) Genomic Hallmarks of Thyroid Neoplasia. Annu Rev Pathol 13:141-162
McClintock, Shannon D; Colacino, Justin A; Attili, Durga et al. (2018) Calcium-Induced Differentiation of Human Colon Adenomas in Colonoid Culture: Calcium Alone versus Calcium with Additional Trace Elements. Cancer Prev Res (Phila) 11:413-428
Spector, Matthew E; Farlow, Janice L; Haring, Catherine T et al. (2018) The potential for liquid biopsies in head and neck cancer. Discov Med 25:251-257
Wagner, Vivian P; Martins, Manoela D; Martins, Marco A T et al. (2018) Targeting histone deacetylase and NF?B signaling as a novel therapy for Mucoepidermoid Carcinomas. Sci Rep 8:2065
Harvey, Innocence; Stephenson, Erin J; Redd, JeAnna R et al. (2018) Glucocorticoid-Induced Metabolic Disturbances Are Exacerbated in Obese Male Mice. Endocrinology 159:2275-2287
Schuetze, Scott M; Bolejack, Vanessa; Thomas, Dafydd G et al. (2018) Association of Dasatinib With Progression-Free Survival Among Patients With Advanced Gastrointestinal Stromal Tumors Resistant to Imatinib. JAMA Oncol 4:814-820
Su, Wenmei; Feng, Shumei; Chen, Xiuyuan et al. (2018) Silencing of Long Noncoding RNA MIR22HG Triggers Cell Survival/Death Signaling via Oncogenes YBX1, MET, and p21 in Lung Cancer. Cancer Res 78:3207-3219
Hosoya, Tomonori; D'Oliveira Albanus, Ricardo; Hensley, John et al. (2018) Global dynamics of stage-specific transcription factor binding during thymocyte development. Sci Rep 8:5605

Showing the most recent 10 out of 1493 publications