EARLY PHASE CLINICAL RESEARCH SUPPORT (Core-030) ABSTRACT The Early Phase Clinical Research Support (EPCRS) component provides data management support to conduct novel early-phase clinical trials designed from research findings of UCCC members. The overall objective of the EPCRS is to promote innovative clinical trials in the UCCC catchment area (the State of Colorado), to facilitate inter- and intra-programmatic translational collaboration within UCCC, and to support the development of novel cutting-edge therapies and strategies to prevent and treat cancer. These clinical trials are hypothesis-driven, high-priority, innovative, Pilot (feasibility) or Phase 0/I institutional trials focused on early phase testing of an agent or device for the diagnosis, prevention, detection or treatment of cancer. Expected outcomes include subsequent later stage clinical testing through the National Clinical Trials Network (NCTN), the Phase II mechanism of the Experimental Therapeutics Clinical Trials Network (ET-CTN), or in conjunction with independent peer-reviewed grant support or industry funding. Although EPCRS was not funded over the last cycle due to disapproval of our PRMS, UCCC has continued to conduct early phase trials which adhere to the NCI eligibility requirements of this mechanism and through our NCI UM1 Southwest Early Clinical Trials (SECT) Consortium (UM1CA186688) with MD Anderson Cancer Center, as well as institutional and industry support, funding has been available to translate bench observations made by our translational UCCC members, to the bedside. Going forward a number of changes have been instituted to further ensure that only the highest quality early clinical science is carried out at UCCC. These include an Investigator-Initiated Trial (IIT) structure, that includes an IIT Incubator (IIT-I) meeting chaired by Eckhardt that brings together a multidisciplinary group of investigators to discuss and promote hypothesis-driven early trials, as well as an IIT Review Committee (IIT-RC) chaired by Flaig and Eckhardt that is charged with ensuring that all components of a concept such as the scientific rationale, statistics, data management, budgeting and finance are assembled to enhance feasibility and to enable prioritization for funding decisions. In addition to the requested CCSG funds, UCCC will provide $250K/yr for early-phase clinical trials that will facilitate expansion of IITs and provide greater opportunity for the translational science of UCCC programs to impact patients in our catchment area. Our future directions include: 1) Establishing processes that stimulate direct collaborations between the UCCC clinical disease groups and the UCCC Research Programs; 2) Working with preclinical scientists in the UCCC to enable the development of novel animal models that can be used provide the rationale for hypothesis-driven early clinical trials; 3) Evaluating challenges regarding participation among racial/ethnic and socioeconomically underserved populations in early clinical trials; 4) Interacting with major UCCC wide strategic initiatives that involve early clinical investigation.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA046934-29
Application #
9207587
Study Section
Subcommittee A - Cancer Centers (NCI-A)
Project Start
Project End
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
29
Fiscal Year
2017
Total Cost
$102,092
Indirect Cost
$36,438
Name
University of Colorado Denver
Department
Type
Domestic Higher Education
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Maccini, Michael A; Westfall, Nicholas J; Van Bokhoven, Adrie et al. (2018) The effect of digital rectal exam on the 4Kscore for aggressive prostate cancer. Prostate 78:506-511
Ye, Haobin; Adane, Biniam; Khan, Nabilah et al. (2018) Subversion of Systemic Glucose Metabolism as a Mechanism to Support the Growth of Leukemia Cells. Cancer Cell 34:659-673.e6
Flannery, Patrick C; DeSisto, John A; Amani, Vladimir et al. (2018) Preclinical analysis of MTOR complex 1/2 inhibition in diffuse intrinsic pontine glioma. Oncol Rep 39:455-464
Elder, Alan M; Tamburini, Beth A J; Crump, Lyndsey S et al. (2018) Semaphorin 7A Promotes Macrophage-Mediated Lymphatic Remodeling during Postpartum Mammary Gland Involution and in Breast Cancer. Cancer Res 78:6473-6485
Yue, Zongliang; Zheng, Qi; Neylon, Michael T et al. (2018) PAGER 2.0: an update to the pathway, annotated-list and gene-signature electronic repository for Human Network Biology. Nucleic Acids Res 46:D668-D676
Smith, Weston J; Tran, Huy; Griffin, James I et al. (2018) Lipophilic indocarbocyanine conjugates for efficient incorporation of enzymes, antibodies and small molecules into biological membranes. Biomaterials 161:57-68
Morgan, Michael J; Fitzwalter, Brent E; Owens, Charles R et al. (2018) Metastatic cells are preferentially vulnerable to lysosomal inhibition. Proc Natl Acad Sci U S A 115:E8479-E8488
Hartwick, Erik W; Costantino, David A; MacFadden, Andrea et al. (2018) Ribosome-induced RNA conformational changes in a viral 3'-UTR sense and regulate translation levels. Nat Commun 9:5074
Genova, Carlo; Socinski, Mark A; Hozak, Rebecca R et al. (2018) EGFR Gene Copy Number by FISH May Predict Outcome of Necitumumab in Squamous Lung Carcinomas: Analysis from the SQUIRE Study. J Thorac Oncol 13:228-236
Greer, Robert O; Eskendri, Jeffrey; Freedman, Paul et al. (2018) Assessment of biologically aggressive, recurrent glandular odontogenic cysts for mastermind-like 2 (MAML2) rearrangements: histopathologic and fluorescent in situ hybridization (FISH) findings in 11 cases. J Oral Pathol Med 47:192-197

Showing the most recent 10 out of 1634 publications