MOLECULAR ONCOLOGY PROGRAM (Project-368) ABSTRACT Overview and Goals: The goal of the Molecular Oncology (MO) program is to harness the power of basic science approaches, from biochemistry to functional genomics, to elucidate molecular mechanisms of cancer evolution and progression, with the ultimate goal of enabling effective strategies for cancer prevention, diagnosis and treatment. The expertise of program members is broad and deep, with major strengths in the control of gene expression, epigenetic regulation, DNA repair and damage responses, telomeres, pathways controlling cell fate and elucidation of cancer-relevant molecular structures. Research Highlights: The transcription factor HIF1A is a key mediator of the cellular response to hypoxia. Despite the importance of HIF1A in homeostasis and various pathologies, little is known about how it regulates RNA polymerase II (RNAPII). A multidisciplinary team including members at UCB consortium site showed HIF1A employs Mediator-associated kinase CDK8 to stimulate RNAPII elongation. These results provide a mechanistic link between HIF1A and CDK8, two potent oncogenes, in the cellular response to hypoxia, and which may lead to novel therapeutic approaches (Cell, 2013). Program Activities: To accomplish this goal, the MO co-leaders employ resources provided by the UCCC to orchestrate intra- and inter-programmatic collaborations through organization of annual retreats and periodic technology forums, as well as routine chaperoning of transdisciplinary collaborations. Enabled by UCCC support, the co-leaders identify and evaluate novel technologies essential to catalyze new research by MO members through the creation and expansion of Shared Resources (SR), and by providing pilot funding to use these technologies, while leveraging resources and research strengths of consortium institutions across the state of Colorado. Through coordinated transdisciplinary relays from MO members to investigators in translational and clinical research programs, the discoveries made in this program move from bench to preclinical investigations and investigator-initiated trials (IITs), which will ultimately improve diagnosis, treatment and prevention of cancer. Members: The program has 43 Full and 20 Associate members with 89 grants encompassing $3.3M NCI and $7.5M of other cancer peer-reviewed research grant funding in 2015. Members are distributed across 20 basic science and clinical departments in the SOM and SOP at UCD as well as at UCB, CSU and at non-consortium institutions. MO members published 630 cancer-focused publications since 2011 of which 30% were inter- and 13% intra-programmatic. Future Directions: We plan to enhance current strengths in functional genomics and epigenetics, develop new capabilities in metabolomics, proteomics and cryo-electron microscopy, and promote interactions with programmatically relevant organizations at UCD such as the Linda Crnic Institute for Down Syndrome and the Division of Biomedical Informatics and Personalized Medicine (BIPM). These efforts will advance the discovery of basic cancer processes and their translation into improved cancer prevention and treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA046934-31
Application #
9657688
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
31
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Collins, Keagan P; Jackson, Kristen M; Gustafson, Daniel L (2018) Hydroxychloroquine: A Physiologically-Based Pharmacokinetic Model in the Context of Cancer-Related Autophagy Modulation. J Pharmacol Exp Ther 365:447-459
Villalobos, Victor Manuel; Hall, Francis; Jimeno, Antonio et al. (2018) Long-Term Follow-Up of Desmoid Fibromatosis Treated with PF-03084014, an Oral Gamma Secretase Inhibitor. Ann Surg Oncol 25:768-775
Montford, John R; Lehman, Allison M B; Bauer, Colin D et al. (2018) Bone marrow-derived cPLA2? contributes to renal fibrosis progression. J Lipid Res 59:380-390
Kogut, Igor; McCarthy, Sandra M; Pavlova, Maryna et al. (2018) High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun 9:745
Nellan, Anandani; Rota, Christopher; Majzner, Robbie et al. (2018) Durable regression of Medulloblastoma after regional and intravenous delivery of anti-HER2 chimeric antigen receptor T cells. J Immunother Cancer 6:30
Goodspeed, Andrew; Jean, Annie; Costello, James C (2018) A Whole-genome CRISPR Screen Identifies a Role of MSH2 in Cisplatin-mediated Cell Death in Muscle-invasive Bladder Cancer. Eur Urol :
Niemeyer, Brian F; Oko, Lauren M; Medina, Eva M et al. (2018) Host Tumor Suppressor p18INK4c Functions as a Potent Cell-Intrinsic Inhibitor of Murine Gammaherpesvirus 68 Reactivation and Pathogenesis. J Virol 92:
Kiseljak-Vassiliades, Katja; Zhang, Yu; Bagby, Stacey M et al. (2018) Development of new preclinical models to advance adrenocortical carcinoma research. Endocr Relat Cancer 25:437-451
McCoach, Caroline E; Le, Anh T; Gowan, Katherine et al. (2018) Resistance Mechanisms to Targeted Therapies in ROS1+ and ALK+ Non-small Cell Lung Cancer. Clin Cancer Res 24:3334-3347
Abraham, Christopher G; Ludwig, Michael P; Andrysik, Zdenek et al. (2018) ?Np63? Suppresses TGFB2 Expression and RHOA Activity to Drive Cell Proliferation in Squamous Cell Carcinomas. Cell Rep 24:3224-3236

Showing the most recent 10 out of 1634 publications