There is a vital need for quantitative assessment of tumor burden and cancer therapy response by in vivo imaging. Computed tomography (CT) and standard magnetic resonance imaging (MRI) cannot provide information on the molecular, biochemical and physiologic properties of cancer tissues, and may also fail to specifically distinguish viable tumor from benign conditions or necrotic tumor. Therefore, novel quantitative imaging techniques and protocols are needed to reveal biomarkers of molecular events induced by cancer therapy. In particular, early imaging of molecularly targeted pathways predicted to be essential for effective cancer therapy is highly likely to play a key role in patient management in the future. Development and use of quantitative imaging for early therapy assessment will greatly facilitate patient management, by sparing patients from weeks or months of toxicity and ineffective treatment. Additionally with the increasing rate of therapy development and related therapy trials, the development of minimally invasive, yet specific and accurate measurements of early therapeutic response has become of critical importance. Because none of the currently available imaging technologies can provide all of the needed information, there is an important trend to combine information from two or more imaging techniques. This need for multimodality imaging has led to a UPCI decision to combine two existing CCSG-funded shared facilities (MRI and PET), and to add a third modality (optical small animal imaging) to create a new, integrated UPCI shared facility, the In Vivo Imaging Facility (IVIF). In addition, the IVIF also incorporates the NCI-funded (CCSG supplement) Imaging Response Assessment Team (IRAT) program, which integrates the clinical research components of the IVIF. The IVIF provides expertise, to most of the CCSG programs of UPCI, in preclinical, translational, and clinical imaging using x-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and optical imaging modalities. The goals of the facility are 1) to provide preclinical assessment of biomarker expression throughout cancer treatment, 2) to provide methods for monitoring biological therapy, 3) to facilitate protocol development for cancer detection, diagnosis, and staging and 4) to advance methods for evaluating early therapy response prognosis following treatment. The IVIF has already made significant contributions to UPCI research by providing non-invasive imaging biomarkers for tumor diagnosis, staging, and prognosis in addition to implementation of protocols for early therapy response assessment. The IVIF has a broad scope and is integral to the Cancer Epidemiology and Prevention Program (e.g. for screening for lung lesions in heavy smokers). The services provided incorporate a multi-modality approach and include measurements of a number of biomarkers for the early evaluation of new therapies, including: 1) tumor volume measurement and Response Evaluation Criteria in Solid Tumors (RECIST) assessment or tumor growth analysis (MRI, PET, &Optical);response to cancer therapy analysis 2) tumor glucose metabolism, cell proliferation, and apoptosis (F-18 FDG PET, F-18 FMISO and F-18 ML-10);3) tumor cell proliferation (F-18 FLT PET);4) tumor capillary transfer rates (MRI);5) spectroscopic analyses for total choline (MRI), citrate, and intracellular sodium (MRI);6) synthesis of targeted contrast agents (MRI, PET, and Optical);7) cell labeling and tracking (MRI &Optical);and 8) custom methods development (MRI, PET, &Optical).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA047904-25
Application #
8519343
Study Section
Special Emphasis Panel (ZCA1-RTRB-L)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
25
Fiscal Year
2013
Total Cost
$216,622
Indirect Cost
$69,738
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Wang, Yue; Wang, Zehua; Xu, Jieni et al. (2018) Systematic identification of non-coding pharmacogenomic landscape in cancer. Nat Commun 9:3192
Lee, Young-Sun; Lee, Dae-Hee; Choudry, Haroon A et al. (2018) Ferroptosis-Induced Endoplasmic Reticulum Stress: Cross-talk between Ferroptosis and Apoptosis. Mol Cancer Res 16:1073-1076
Tong, Jingshan; Zheng, Xingnan; Tan, Xiao et al. (2018) Mcl-1 Phosphorylation without Degradation Mediates Sensitivity to HDAC Inhibitors by Liberating BH3-Only Proteins. Cancer Res 78:4704-4715
Menk, Ashley V; Scharping, Nicole E; Rivadeneira, Dayana B et al. (2018) 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J Exp Med 215:1091-1100
Caves, Elizabeth A; Cook, Sarah A; Lee, Nara et al. (2018) Air-Liquid Interface Method To Study Epstein-Barr Virus Pathogenesis in Nasopharyngeal Epithelial Cells. mSphere 3:
Saydmohammed, Manush; Vollmer, Laura L; Onuoha, Ezenwa O et al. (2018) A High-Content Screen Reveals New Small-Molecule Enhancers of Ras/Mapk Signaling as Probes for Zebrafish Heart Development. Molecules 23:
Gough, Albert; Shun, Tong Ying; Taylor, D Lansing et al. (2018) Integrating Analysis of Cellular Heterogeneity in High-Content Dose-Response Studies. Methods Mol Biol 1745:25-46
Fletcher, Rochelle; Wang, Yi-Jun; Schoen, Robert E et al. (2018) Colorectal cancer prevention: Immune modulation taking the stage. Biochim Biophys Acta Rev Cancer 1869:138-148
Li, Xiang; George, Subin M; Vernetti, Lawrence et al. (2018) A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 18:2614-2631
Singh, Renu; Mehrotra, Shailly; Gopalakrishnan, Mathangi et al. (2018) Population pharmacokinetics and exposure-response assessment of veliparib co-administered with temozolomide in patients with myeloid leukemias. Cancer Chemother Pharmacol :

Showing the most recent 10 out of 1187 publications