The UPCI Chemical Biology Facility (ChBF) has emerged from an innovative UPCI-supported pilot project to become a new Shared Facility. The overall goal ofthe ChBF is to ensure that UPCI members have access to the most modern chemical biology reagents, instrumentation, and personnel, which will enable them to identify unique chemical probes and potential anticancer leads for further optimization. The ChBF will provide high quality support services to UPCI researchers for: 1) high throughput screening (HTS) and high content screening (HCS) assay design, development, validation, and implementation, 2) small molecule and siRNA library distribution, 3) lead characterization and optimization, and 4) data analysis. A component ofthe ChBF's service will include supplying high quality, professional access to multiple automated liquid handlers for use in 96- and 384-well plate formats, detectors, large chemical libraries, siRNA libraries, chemical informatics, chemical analysis, analog acquisition, and sophisticated data analysis software. The ChBF will collaborate with UPCI faculty, staff, and trainees in developing and conducting cancer-relevant, cell-free and cell-based HTS and HCS assays. Training will be offered either on an individual or group basis depending on the perceived need or formal requests for training. Availability of ChBF resources will be disseminated through posts on the UPCI website, emails to UPCI members, and annual workshops, seminars, and poster presentations at the UPCI retreat. The ChBF is especially interested in promoting innovative assays at UPCI. Therefore, it will encourage the development and implementation of challenging cancer-related assays. In particular, the ChBF will promote novel HCS assays focused on targets that have traditionally been considered """"""""undruggable"""""""" as an innovative component of its activity within UPCI. The ChBF creates a starting point for the identification of unique chemical probes and lead structures for potential new therapies for all of UPCI's Programs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA047904-26
Application #
8705410
Study Section
Special Emphasis Panel (ZCA1-RTRB-L)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
26
Fiscal Year
2014
Total Cost
$123,232
Indirect Cost
$41,711
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Chen, Dongshi; Ni, Hong-Min; Wang, Lei et al. (2018) PUMA induction mediates acetaminophen-induced necrosis and liver injury. Hepatology :
Tahata, Shawn; Singh, Shivendra V; Lin, Yan et al. (2018) Evaluation of Biodistribution of Sulforaphane after Administration of Oral Broccoli Sprout Extract in Melanoma Patients with Multiple Atypical Nevi. Cancer Prev Res (Phila) 11:429-438
Moravcikova, Erika; Meyer, E Michael; Corselli, Mirko et al. (2018) Proteomic Profiling of Native Unpassaged and Culture-Expanded Mesenchymal Stromal Cells (MSC). Cytometry A 93:894-904
Samuelsson, Laura B; Bovbjerg, Dana H; Roecklein, Kathryn A et al. (2018) Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review. Neurosci Biobehav Rev 84:35-48
Shiffman, Saul; Mao, Jason M; Kurland, Brenda F et al. (2018) Do non-daily smokers compensate for reduced cigarette consumption when smoking very-low-nicotine-content cigarettes? Psychopharmacology (Berl) 235:3435-3441
Cao, Chunyu; Wu, Hao; Vasilatos, Shauna N et al. (2018) HDAC5-LSD1 axis regulates antineoplastic effect of natural HDAC inhibitor sulforaphane in human breast cancer cells. Int J Cancer 143:1388-1401
Yochum, Zachary A; Cades, Jessica; Wang, Hailun et al. (2018) Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene :
Beumer, Jan H; Inker, Lesley A; Levey, Andrew S (2018) Improving Carboplatin Dosing Based on EstimatedĀ GFR. Am J Kidney Dis 71:163-165
Tong, Jingshan; Zheng, Xingnan; Tan, Xiao et al. (2018) Mcl-1 Phosphorylation without Degradation Mediates Sensitivity to HDAC Inhibitors by Liberating BH3-Only Proteins. Cancer Res 78:4704-4715
Menk, Ashley V; Scharping, Nicole E; Rivadeneira, Dayana B et al. (2018) 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J Exp Med 215:1091-1100

Showing the most recent 10 out of 1187 publications