The Vector Core Facility (VCF) has served, and will continue to serve, as an important shared facility for UPCI researchers by providing many hundreds of viral and non-viral vectors and reagents to UPCI members, particularly for use in cancer gene therapy. Although greater than 50% of the usage of this shared facility is by UPCI members, requested CCSG support is only approximately 15% of the total budget of the facility. The VCF functions within the framework of the UPCI as a dynamic resource that develops novel vectors and provides state-of-the-art viral and non-viral vector technology. The major emphasis of the VCF has been on the utilization of adenoviral and retroviral vectors for gene transduction. This facility also has the capability to produce adeno-associated viruses and DNA plasmids for gene delivery. In addition to vectors, the facility also provides cell lines, viruses, packaging lines, plasmids, and protocols, as well as technical assistance and training to individuals in the use of viral and non-viral vectors for gene transfer. In response to a growth in research demand, over the last year the VCF has expanded its focus to include lentiviral vectors for expression of shRNA and cDNA to aid in studies of gene-discovery, drug development and target validation, and to provide this expertise and reagents to UPCI members involved in basic science research using lentiviral vectors. Currently the VCF provides include high- and low-titer HIV and FIV lentivirus, preparation of stock viruses for fluorescent protein expression and shRNA expression from a library specific to human and mouse genes, design and development of lentiviruses for cDNA expression for cell-based studies and transgenic mouse production, cell transduction & characterization (development of stable cell lines and analysis by qRT-PCR) and lentiviral titering and testing for replication competence.
The specific aims of the Vector Core Facility are to: 1. Provide UPCI investigators with viral and non-viral vectors that express shRNA or the specific gene of interest and that are most appropriate and efficacious for their proposed experiments. 2. Develop improved viral and non-viral vectors for more efficient gene transfer with higher and/or regulated gene expression. 3. Assist in the development of new, state-of-the-art methods for efficient gene delivery. 4. Provide technical assistance and protocols for gene therapy projects, making use of viral and non-viral gene delivery systems.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RTRB-L)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Du, Tian; Sikora, Matthew J; Levine, Kevin M et al. (2018) Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer. Breast Cancer Res 20:106
Wang, Zehua; Yang, Bo; Zhang, Min et al. (2018) lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell 33:706-720.e9
Volonte, Daniela; Vyas, Avani R; Chen, Chen et al. (2018) Caveolin-1 promotes the tumor suppressor properties of oncogene-induced cellular senescence. J Biol Chem 293:1794-1809
Ma, Jing; Salamoun, Joseph; Wipf, Peter et al. (2018) Combination of a thioxodihydroquinazolinone with cisplatin eliminates ovarian cancer stem cell-like cells (CSC-LCs) and shows preclinical potential. Oncotarget 9:6042-6054
Linden, Hannah M; Peterson, Lanell M; Fowler, Amy M (2018) Clinical Potential of Estrogen and Progesterone Receptor Imaging. PET Clin 13:415-422
Liu, Zhuqing; McMichael, Elizabeth L; Shayan, Gulidanna et al. (2018) Novel Effector Phenotype of Tim-3+ Regulatory T Cells Leads to Enhanced Suppressive Function in Head and Neck Cancer Patients. Clin Cancer Res 24:4529-4538
Song, Xinxin; Zhu, Shan; Xie, Yangchun et al. (2018) JTC801 Induces pH-dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice. Gastroenterology 154:1480-1493
Santos, Patricia M; Butterfield, Lisa H (2018) Dendritic Cell-Based Cancer Vaccines. J Immunol 200:443-449
Krivinko, Josh M; Erickson, Susan L; Ding, Ying et al. (2018) Synaptic Proteome Compensation and Resilience to Psychosis in Alzheimer's Disease. Am J Psychiatry 175:999-1009
Chartoumpekis, Dionysios V; Yagishita, Yoko; Fazzari, Marco et al. (2018) Nrf2 prevents Notch-induced insulin resistance and tumorigenesis in mice. JCI Insight 3:

Showing the most recent 10 out of 1187 publications