Cancer Proteomics Facility (CPF) The Cancer Proteomics Facility (CPF) provides UPCI investigators access to state-of-the-art techniques and expertise for the detection, quantification, and characterization of cancer-related and biologically relevant proteins for basic, translational, and clinical studies.
The Specific Aims of the CPF are to 1) provide expert guidance in the design and implementation of experiments that use modern protein analysis techniques, including statistical and bioinformatics analysis of the proteomic data; 2) collect, store, and optimally analyze proteins in a wide variety of samples including: cells, tissue, and clinically accessible fluids; 3) provide comprehensive protein identification and characterization services to UPCI investigators; 4) provide targeted quantitative protein assays to UPCI investigators; 5) perform unbiased protein profiling analyses (e.g. SILAC, ITRAQ, and Differential MS) of complex biological samples to identify cancer-related proteins; 6) provide training related to use of and access to all instrumentation and techniques used within CPF, and 7) enable investigators, through the development of a cloud based informatics platform, to use state-of-the-art data management, processing, and analysis tools for proteomic and metabolomic studies. During the past grant cycle, the UPCI and University of Pittsburgh School of Medicine mass spectrometry shared resource facilities have merged and new leadership has been hired to direct this service. Mass spectrometry-based proteomics techniques are now supported through a campus-wide Biomedical Mass Spectrometry Center that is housed on the Oakland campus and directed by Nathan Yates, PhD. This centralized shared resource provides UPCI investigators access to a wide array of high performance mass spectrometry techniques. Antibody based assays are supported by the Luminex laboratory in the Hillman Cancer Center that is directed by Anna Lokshin, PhD and specializes in commercial multiplexed bead based platforms. The CPF has assembled a broad and rapidly advancing set of techniques that allow each researcher to study cancer-related proteins with unmatched sensitivity and specificity. Together, the components of the CPF provide UPCI investigators access to new and specialized techniques for characterizing proteins in cell based animal and patient samples. As a new and growing component of many UPCI research initiatives, the CPF enables investigators to apply mass spectrometry-based, as well as Luminex bead-based, protein measurement techniques to the study of human cells, preclinical models, tumors, and other clinically accessible samples. During the current project period investigators in 9 UPCI Research Programs used the CPF.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA047904-31
Application #
9753959
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
31
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15260
Chen, Ruochan; Zhu, Shan; Fan, Xue-Gong et al. (2018) High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology 67:1823-1841
Zahorchak, Alan F; Macedo, Camila; Hamm, David E et al. (2018) High PD-L1/CD86 MFI ratio and IL-10 secretion characterize human regulatory dendritic cells generated for clinical testing in organ transplantation. Cell Immunol 323:9-18
Rogers, Meredith C; Lamens, Kristina D; Shafagati, Nazly et al. (2018) CD4+ Regulatory T Cells Exert Differential Functions during Early and Late Stages of the Immune Response to Respiratory Viruses. J Immunol 201:1253-1266
Butterfield, Lisa H (2018) The Society for Immunotherapy of Cancer Biomarkers Task Force recommendations review. Semin Cancer Biol 52:12-15
Jing, Y; Nguyen, M M; Wang, D et al. (2018) DHX15 promotes prostate cancer progression by stimulating Siah2-mediated ubiquitination of androgen receptor. Oncogene 37:638-650
Singh, Krishna B; Ji, Xinhua; Singh, Shivendra V (2018) Therapeutic Potential of Leelamine, a Novel Inhibitor of Androgen Receptor and Castration-Resistant Prostate Cancer. Mol Cancer Ther 17:2079-2090
Santos, Patricia M; Butterfield, Lisa H (2018) Next Steps for Immune Checkpoints in Hepatocellular Carcinoma. Gastroenterology 155:1684-1686
Gao, Ying; Tan, Jun; Jin, Jingyi et al. (2018) SIRT6 facilitates directional telomere movement upon oxidative damage. Sci Rep 8:5407
Krishnamurthy, Anuradha; Dasari, Arvind; Noonan, Anne M et al. (2018) Phase Ib Results of the Rational Combination of Selumetinib and Cyclosporin A in Advanced Solid Tumors with an Expansion Cohort in Metastatic Colorectal Cancer. Cancer Res 78:5398-5407
Toptan, Tuna; Abere, Bizunesh; Nalesnik, Michael A et al. (2018) Circular DNA tumor viruses make circular RNAs. Proc Natl Acad Sci U S A 115:E8737-E8745

Showing the most recent 10 out of 1187 publications