Cell and Tissue Imaging Facility (CTIF) The goal of the Cell and Tissue Imaging Facility (CTIF) is to provide UPMC Hillman Cancer Center (HCC) members with a ?cutting-edge? resource equipped to address all research-related microscopy needs and expert advice on experimental design and data analysis. The imaging specialties offered by CTIF include: light and fluorescence microscopy (macro-dissecting light and fluorescence, epi-fluorescence, confocal scanning, and multi-photon imaging); live cell microscopy (transmitted light and fluorescence) and fluorescence specialties including fluorescence resonance energy transfer (FRET), spectral analysis, ratiometric imaging, super-resolution microscopy (stimulated emission depletion microscopy [STED] structured illumination microscopy [SIM] and stochastic optical reconstruction microscopy [STORM]) technologies), light sheet approaches (both macro and lattice), ribbon scanning ultrafast confocal microscopy; ultrastructural electron microscopy (transmission electron microscopy [TEM], scanning electron microscopy [SEM], immuno-electron SEM and TEM. In addition, the faculty and staff of CTIF provide expertise for assisting with experimental design, instrument use, software use, and complex imaging and analysis methods. Furthermore we are expert in the development and application of computer aided morphometric analysis methods and actively develop algorithms for quantitation of events in living and fixed material.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA047904-32
Application #
10024342
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-09-10
Project End
2025-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
32
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15260
Rogers, Meredith C; Lamens, Kristina D; Shafagati, Nazly et al. (2018) CD4+ Regulatory T Cells Exert Differential Functions during Early and Late Stages of the Immune Response to Respiratory Viruses. J Immunol 201:1253-1266
Chen, Ruochan; Zhu, Shan; Fan, Xue-Gong et al. (2018) High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology 67:1823-1841
Zahorchak, Alan F; Macedo, Camila; Hamm, David E et al. (2018) High PD-L1/CD86 MFI ratio and IL-10 secretion characterize human regulatory dendritic cells generated for clinical testing in organ transplantation. Cell Immunol 323:9-18
Butterfield, Lisa H (2018) The Society for Immunotherapy of Cancer Biomarkers Task Force recommendations review. Semin Cancer Biol 52:12-15
Jing, Y; Nguyen, M M; Wang, D et al. (2018) DHX15 promotes prostate cancer progression by stimulating Siah2-mediated ubiquitination of androgen receptor. Oncogene 37:638-650
Singh, Krishna B; Ji, Xinhua; Singh, Shivendra V (2018) Therapeutic Potential of Leelamine, a Novel Inhibitor of Androgen Receptor and Castration-Resistant Prostate Cancer. Mol Cancer Ther 17:2079-2090
Santos, Patricia M; Butterfield, Lisa H (2018) Next Steps for Immune Checkpoints in Hepatocellular Carcinoma. Gastroenterology 155:1684-1686
Gao, Ying; Tan, Jun; Jin, Jingyi et al. (2018) SIRT6 facilitates directional telomere movement upon oxidative damage. Sci Rep 8:5407
Krishnamurthy, Anuradha; Dasari, Arvind; Noonan, Anne M et al. (2018) Phase Ib Results of the Rational Combination of Selumetinib and Cyclosporin A in Advanced Solid Tumors with an Expansion Cohort in Metastatic Colorectal Cancer. Cancer Res 78:5398-5407
Toptan, Tuna; Abere, Bizunesh; Nalesnik, Michael A et al. (2018) Circular DNA tumor viruses make circular RNAs. Proc Natl Acad Sci U S A 115:E8737-E8745

Showing the most recent 10 out of 1187 publications