The Macromolecular Structure Shared Resource (MSSR) is comprised of the X-ray crystallography (X-ray) and the Nuclear Magnetic Resonance (NMR) laboratories. X-ray crystallography and NMR are highly complementary methods for elucidating three-dimensional structures and for studying macromolecular interactions. Together, they provide Cancer Center members with comprehensive methodologies to understand how cancer-related biological macromolecules function in normal and diseased states at the molecular level. Cancer Center investigators will be advised and assisted in utilizing these sophisticated technologies to determine structures of cancer-related biological macromolecules and to investigate their interacfions with other macromolecules and with potential therapeutic agents by the Directors of the X-ray and NMR laboratories, P. John Hart, PhD and Andrew P. Hinck, PhD, respectively. The X-ray component of the MSSR includes an Art Robbins crystallization robot and two state-of-the-art Rigaku-MSSR X-ray data collecfion systems. The instrumentation provides full capabilities for conducting all modern X-ray diffraction experiments and is suitable for obtaining high quality three-dimensional structures of proteins, nucleic acids and their complexes. The NMR component of the MSSR includes state-of-the-art Bruker spectrometers equipped with high sensitivity cryoprobes operating at 500, 600, and 700 MHz. The instrumentafion provides full capabilities for conducting modern NMR experiments with N, C, and H labeled macromolecules and is suitable for obtaining three-dimensional solution structures and investigating interactions with other macromolecules and potential therapeutic agents. The MSSR is made accessible to the broader Cancer Center Membership by PhD-trained technical managers, Alex Taylor, PhD, and Udayar llangovan, PhD, for the X-ray and NMR laboratories, respectively, who provide guidance at each step in the process, from sample preparation to interpretation and presentation of results. The MSSR provides a comprehensive array of methodologies with which to visualize and functionally characterize cancer-related biological macromolecules.

Public Health Relevance

The key to determining the function of a molecule and how it is altered by mutation is facilitated by elucidating the higher level structure. The Macromolecular Structure Shared Resource provides NMR and Xray crystallography capabilities to cancer center members. This information obtained by this shared resource provides essential information not only for basic research, but also for translational applications.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA054174-17
Application #
7944757
Study Section
Subcommittee G - Education (NCI)
Project Start
2009-08-03
Project End
2012-07-31
Budget Start
2009-08-03
Budget End
2010-07-31
Support Year
17
Fiscal Year
2009
Total Cost
$31,904
Indirect Cost
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Yu, Xiaojie; Zhang, Yiqiang; Ma, Xiuye et al. (2018) miR-195 potentiates the efficacy of microtubule-targeting agents in non-small cell lung cancer. Cancer Lett 427:85-93
Ankerst, Donna P; Goros, Martin; Tomlins, Scott A et al. (2018) Incorporation of Urinary Prostate Cancer Antigen 3 and TMPRSS2:ERG into Prostate Cancer Prevention Trial Risk Calculator. Eur Urol Focus :
Arora, Sukeshi Patel; Mahalingam, Devalingam (2018) Immunotherapy in colorectal cancer: for the select few or all? J Gastrointest Oncol 9:170-179
Arellano, Luisa M; Arora, Sukeshi Patel (2018) Systemic Treatment of Advanced Hepatocellular Carcinoma in Older Adults. J Nat Sci 4:
Du, Liqin; Zhao, Zhenze; Suraokar, Milind et al. (2018) LMO1 functions as an oncogene by regulating TTK expression and correlates with neuroendocrine differentiation of lung cancer. Oncotarget 9:29601-29618
Ankerst, Donna P; Straubinger, Johanna; Selig, Katharina et al. (2018) A Contemporary Prostate Biopsy Risk Calculator Based on Multiple Heterogeneous Cohorts. Eur Urol 74:197-203
Sun, Xiujie; Gupta, Kshama; Wu, Bogang et al. (2018) Tumor-extrinsic discoidin domain receptor 1 promotes mammary tumor growth by regulating adipose stromal interleukin 6 production in mice. J Biol Chem 293:2841-2849
Horning, Aaron M; Wang, Yao; Lin, Che-Kuang et al. (2018) Single-Cell RNA-seq Reveals a Subpopulation of Prostate Cancer Cells with Enhanced Cell-Cycle-Related Transcription and Attenuated Androgen Response. Cancer Res 78:853-864
Gong, Siqi; Tomusange, Khamis; Kulkarni, Viraj et al. (2018) Anti-HIV IgM protects against mucosal SHIV transmission. AIDS 32:F5-F13
Soteros, Breeanne M; Cong, Qifei; Palmer, Christian R et al. (2018) Sociability and synapse subtype-specific defects in mice lacking SRPX2, a language-associated gene. PLoS One 13:e0199399

Showing the most recent 10 out of 989 publications