The new Radiation Research and Translational Biology, (RRTB) program integrates elements from three prior Kimmel Cancer Center programs: Structural Biology and Bioinformatics Program, Developmental Therapeutics Program, and Hematological Malignancies and Stem Cell Transplantation Program. This restructuring was undertaken to leverage key strengths of clinical research at the KCC in Radiation Oncology, Hematological Malignancies, and Stem Cell Transplantation to create a program that conducts bench to bedside research with sustained return of clinical data to the bench in the form of reverse translation. The central themes of the new program include angiogenesis, stem cell function and microenvironmental mediators of the radiation response. The RRTB is an interdisciplinary program comprised of basic, translational and clinical investigators from eight departments and multiple areas of active investigation, interest and expertise. Their work is supported by $18 million in peer-reviewed funding ($16.0 M from NCI). The total number of publications of Program members is 940 of which 16% are Intraprogrammmatic and 14% are Interprogrammatic. The program is a multidisciplinary effort with the goal of defining fundamental mechanisms and targets in radiation research and translational biology, which can facilitate innovations in treating cancer in patients. The specific goals of the RRTB Program are: (1) Define and characterize molecular targets for ionizing radiation. (2) Hypoxia and Angiogenesis: Elucidate mechanisms regulating HIF, integrate angiogenesis inhibitors with ionizing radiation and preclinical and clinical imaging of angiogenesis. (3) Study normal tissue injury/genotoxic stress. (4) Understand radiation target elucidation and modification and (5) Discover and translate diagnostic and therapeutic innovations developed in the laboratories of KCC members to clinical practice. This new program has generated new collaborations within the program and fresh research directions with other research programs in the cancer center.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA056036-10
Application #
7923888
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
10
Fiscal Year
2009
Total Cost
$33,625
Indirect Cost
Name
Thomas Jefferson University
Department
Type
DUNS #
053284659
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
McNair, Christopher; Xu, Kexin; Mandigo, Amy C et al. (2018) Differential impact of RB status on E2F1 reprogramming in human cancer. J Clin Invest 128:341-358
Garcia, Samantha A; Lebrun, Aurore; Kean, Rhonda B et al. (2018) Clearance of attenuated rabies virus from brain tissues is required for long-term protection against CNS challenge with a pathogenic variant. J Neurovirol 24:606-615
Vido, Michael J; Le, Kaitlyn; Hartsough, Edward J et al. (2018) BRAF Splice Variant Resistance to RAF Inhibitor Requires Enhanced MEK Association. Cell Rep 25:1501-1510.e3
Brody, Jonathan R; Dixon, Dan A (2018) Complex HuR function in pancreatic cancer cells. Wiley Interdiscip Rev RNA 9:e1469
Liao, Lili; Liu, Zongzhi Z; Langbein, Lauren et al. (2018) Multiple tumor suppressors regulate a HIF-dependent negative feedback loop via ISGF3 in human clear cell renal cancer. Elife 7:
Heeke, Arielle L; Pishvaian, Michael J; Lynce, Filipa et al. (2018) Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO Precis Oncol 2018:
Parent, Kristin N; Schrad, Jason R; Cingolani, Gino (2018) Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy. Viruses 10:
Rappaport, Jeffrey A; Waldman, Scott A (2018) The Guanylate Cyclase C-cGMP Signaling Axis Opposes Intestinal Epithelial Injury and Neoplasia. Front Oncol 8:299
Pandya, Kalgi D; Palomo-Caturla, Isabel; Walker, Justin A et al. (2018) An Unmutated IgM Response to the Vi Polysaccharide of Salmonella Typhi Contributes to Protective Immunity in a Murine Model of Typhoid. J Immunol 200:4078-4084
Hussain, Maha; Daignault-Newton, Stephanie; Twardowski, Przemyslaw W et al. (2018) Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate Cancer: Results From NCI 9012. J Clin Oncol 36:991-999

Showing the most recent 10 out of 807 publications