The new Radiation Research and Translational Biology, (RRTB) program integrates elements from three prior Kimmel Cancer Center programs: Structural Biology and Bioinformatics Program, Developmental Therapeutics Program, and Hematological Malignancies and Stem Cell Transplantation Program. This restructuring was undertaken to leverage key strengths of clinical research at the KCC in Radiation Oncology, Hematological Malignancies, and Stem Cell Transplantation to create a program that conducts bench to bedside research with sustained return of clinical data to the bench in the form of reverse translation. The central themes of the new program include angiogenesis, stem cell function and microenvironmental mediators of the radiation response. The RRTB is an interdisciplinary program comprised of basic, translational and clinical investigators from eight departments and multiple areas of active investigation, interest and expertise. Their work is supported by $18 million in peer-reviewed funding ($16.0 M from NCI). The total number of publications of Program members is 940 of which 16% are Intraprogrammmatic and 14% are Interprogrammatic. The program is a multidisciplinary effort with the goal of defining fundamental mechanisms and targets in radiation research and translational biology, which can facilitate innovations in treating cancer in patients. The specific goals of the RRTB Program are: (1) Define and characterize molecular targets for ionizing radiation. (2) Hypoxia and Angiogenesis: Elucidate mechanisms regulating HIF, integrate angiogenesis inhibitors with ionizing radiation and preclinical and clinical imaging of angiogenesis. (3) Study normal tissue injury/genotoxic stress. (4) Understand radiation target elucidation and modification and (5) Discover and translate diagnostic and therapeutic innovations developed in the laboratories of KCC members to clinical practice. This new program has generated new collaborations within the program and fresh research directions with other research programs in the cancer center.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA056036-12
Application #
8302934
Study Section
Subcommittee G - Education (NCI)
Project Start
2011-06-01
Project End
2013-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
12
Fiscal Year
2011
Total Cost
$31,130
Indirect Cost
Name
Thomas Jefferson University
Department
Type
DUNS #
053284659
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
Peng, Weidan; Furuuchi, Narumi; Aslanukova, Ludmila et al. (2018) Elevated HuR in Pancreas Promotes a Pancreatitis-Like Inflammatory Microenvironment That Facilitates Tumor Development. Mol Cell Biol 38:
Waldman, Scott A; Camilleri, Michael (2018) Guanylate cyclase-C as a therapeutic target in gastrointestinal disorders. Gut 67:1543-1552
Sullivan-Reed, Katherine; Bolton-Gillespie, Elisabeth; Dasgupta, Yashodhara et al. (2018) Simultaneous Targeting of PARP1 and RAD52 Triggers Dual Synthetic Lethality in BRCA-Deficient Tumor Cells. Cell Rep 23:3127-3136
Lu, Huimin; Bowler, Nicholas; Harshyne, Larry A et al. (2018) Exosomal ?v?6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol 70:20-35
Lapadula, Dominic; Farias, Eduardo; Randolph, Clinita E et al. (2018) Effects of Oncogenic G?q and G?11 Inhibition by FR900359 in Uveal Melanoma. Mol Cancer Res :
Vite, Alexia; Zhang, Caimei; Yi, Roslyn et al. (2018) ?-Catenin-dependent cytoskeletal tension controls Yap activity in the heart. Development 145:
McNair, Christopher; Xu, Kexin; Mandigo, Amy C et al. (2018) Differential impact of RB status on E2F1 reprogramming in human cancer. J Clin Invest 128:341-358
Garcia, Samantha A; Lebrun, Aurore; Kean, Rhonda B et al. (2018) Clearance of attenuated rabies virus from brain tissues is required for long-term protection against CNS challenge with a pathogenic variant. J Neurovirol 24:606-615
Vido, Michael J; Le, Kaitlyn; Hartsough, Edward J et al. (2018) BRAF Splice Variant Resistance to RAF Inhibitor Requires Enhanced MEK Association. Cell Rep 25:1501-1510.e3
Brody, Jonathan R; Dixon, Dan A (2018) Complex HuR function in pancreatic cancer cells. Wiley Interdiscip Rev RNA 9:e1469

Showing the most recent 10 out of 807 publications