Among the keys to deciphering normal physiological processes and their derangements in neoplasia are an understanding of the relationship in spatial and temporal terms of different cellular components to each other, and the related ability to correlate structure with function. Providing these capabilities of visualization is the goal of the KCC Bioimaging Facility/Shared Resource by having available powerful, reliable, and readily accessible light microscopic image acquisition and analysis capabilities for KCC investigators. The Facility is Cancer Center-managed and operates with well-trained staff and a faculty supervisor. Dr. James Keen, and provides training in operation of all instruments as well as consultation in operation, methodology, experimental approach, and interpretation. It is open for scheduled use at any time by trained investigators, or the Facility operator can perform imaging and analysis with laboratory personnel. Through the operation of this Shared Resource, individual KCC investigators are assured of state-of-the-art and reliable facilities operated with a high degree of technical expertise, and are relieved of the obligation for substantial outlay for equipment, maintenance and personnel training. The facility has provided service for more than 90 laboratories and several hundred individuals during the past award period, of which more than 80% are Cancer Center members. Major support for the Facility has been derived from successful competition for extramural funding, from institutional and Cancer Center sources, and from user chargebacks tied to services rendered.
The Kimmel Cancer Center Bioimaging Facility provides investigators with the capability to visualize cells and structures within living and fixed cells at the light microscope level. By being able to determine the location and distribution of cellular components in time and space in normal and neoplastic samples, investigators can gain new information about how cancer cells differ from normal ones, and test hypotheses about cancer causation and progression.
Showing the most recent 10 out of 807 publications