The mission of the Sidney Kimmel Cancer Center Bioimaging Shared Resource (BISR) is to advance the scientific research programs of the Cancer Center by providing powerful, reliable, and readily accessible light microscopic image acquisition and analysis capabilities to SKCC investigators. The Bioimaging Shared Resource provides laser point-scanning and spinning disk confocal, TIRF (total internal refection fluorescence), and widefield epifluorescence microscopy capabilities allowing for multi-wavelength visualization and analysis of fixed and living specimens, Z series, single molecule events at surfaces and interfaces, as well as image analysis and processing expertise. The BISR, founded in 1991 by its long-term director James Keen, PhD and continuously funded by the NCI since 1996, is operated under the leadership of Director James Keen, PhD. During 2016, Philip Wedegaertner, PhD, who has long-term expertise using fluorescence microscopy to understand mechanisms of subcellular localization and trafficking of signaling proteins, was appointed as Co- Director in response to the expanded capabilities realized in BISR over the last funding period. Experienced manager, Yolanda Covarrubias, PhD, provides operational consultation, and training and assistance for all instruments. The BISR is centrally located in the Bluemle Life Sciences Building and after training, is accessible for experienced, trained investigators 24 hours a day, seven days a week through the iLab scheduling system. Current BISR goals include: 1) Provide state-of-the-art visualization capabilities; 2) Train users to properly and independently use microscopes and data analysis software; 3) Provide ready access (24/7) to reliable light microscopic image acquisition and analysis tools

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA056036-21
Application #
9956988
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
21
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Thomas Jefferson University
Department
Type
DUNS #
053284659
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
Heeke, Arielle L; Pishvaian, Michael J; Lynce, Filipa et al. (2018) Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO Precis Oncol 2018:
Parent, Kristin N; Schrad, Jason R; Cingolani, Gino (2018) Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy. Viruses 10:
Rappaport, Jeffrey A; Waldman, Scott A (2018) The Guanylate Cyclase C-cGMP Signaling Axis Opposes Intestinal Epithelial Injury and Neoplasia. Front Oncol 8:299
Pandya, Kalgi D; Palomo-Caturla, Isabel; Walker, Justin A et al. (2018) An Unmutated IgM Response to the Vi Polysaccharide of Salmonella Typhi Contributes to Protective Immunity in a Murine Model of Typhoid. J Immunol 200:4078-4084
Hussain, Maha; Daignault-Newton, Stephanie; Twardowski, Przemyslaw W et al. (2018) Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate Cancer: Results From NCI 9012. J Clin Oncol 36:991-999
Shafi, Ayesha A; Schiewer, Matthew J; de Leeuw, Renée et al. (2018) Patient-derived Models Reveal Impact of the Tumor Microenvironment on Therapeutic Response. Eur Urol Oncol 1:325-337
Meyer, Sara E; Muench, David E; Rogers, Andrew M et al. (2018) miR-196b target screen reveals mechanisms maintaining leukemia stemness with therapeutic potential. J Exp Med 215:2115-2136
Mazina, Olga M; Mazin, Alexander V (2018) Reconstituting the 4-Strand DNA Strand Exchange. Methods Enzymol 600:285-305
Magee, Michael S; Abraham, Tara S; Baybutt, Trevor R et al. (2018) Human GUCY2C-Targeted Chimeric Antigen Receptor (CAR)-Expressing T Cells Eliminate Colorectal Cancer Metastases. Cancer Immunol Res 6:509-516
Chervoneva, Inna; Freydin, Boris; Hyslop, Terry et al. (2018) Modeling qRT-PCR dynamics with application to cancer biomarker quantification. Stat Methods Med Res 27:2581-2595

Showing the most recent 10 out of 807 publications