The Robert H. Lurie Comprehensive Cancer Center Mouse Phenotyping Core Facility provides comprehensive gross and histopathologic assessment of murine phenotypes, histological evaluation of tissue derived from animal tumor models, and training sessions for investigators to learn to detect gross anomalies in mice, harvest tissue from various organ systems, and to perform immunohistochemical or special stains on tissue sections. This Core Facility was developed to fulfill a need by the investigative community to accurately analyze their new murine models and to enhance the ability to extract meaningful phenotypic information to guide future investigations. Murine tissue has histological characteristics distinct from human tissue;therefore, assessment under the microscope requires pathologists with experience in murine histology. Moreover, tissue harvesting, processing, and sectioning demands precision, especially in the case of embryonic lethal phenotypes. The Core Facility is directed by a perinatal pathologist with more than fifteen years of experience in animal tissue assessment, immunohistochemical analyses, and pathology. Her extensive background in developmental anomalies allows for accurate assessment of embryonic lethal phenotypes and for establishing the proximate cause of the demise. Other team members of this facility include a second perinatal pathologist, a molecular biologist, and a certified histotechnologist. Together, this team provides invaluable expertise to investigators by offering insight into phenotypes of newly developed murine models, by providing training sessions in tissue harvesting and analysis, and by assisting with performance and grading of immunohistochemical studies. This comprehensive approach to phenotyping viable and embryonic lethal models has the potential to discover new target organ systems and signaling partners for molecules and to identify innovative model systems to study cancer biology for the scientific community.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA060553-18S3
Application #
8486523
Study Section
Subcommittee G - Education (NCI)
Project Start
2012-09-06
Project End
2013-07-31
Budget Start
2012-09-06
Budget End
2013-07-31
Support Year
18
Fiscal Year
2012
Total Cost
$161,721
Indirect Cost
$85,187
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Smith, Erica D; Garza-Gongora, Arturo G; MacQuarrie, Kyle L et al. (2018) Interstitial telomeric loops and implications of the interaction between TRF2 and lamin A/C. Differentiation 102:19-26
Hong, Bong Jin; Iscen, Aysenur; Chipre, Anthony J et al. (2018) Highly Stable, Ultrasmall Polymer-Grafted Nanobins (usPGNs) with Stimuli-Responsive Capability. J Phys Chem Lett 9:1133-1139
Mehta, Amol; Awah, Chidiebere U; Sonabend, Adam M (2018) Topoisomerase II Poisons for Glioblastoma; Existing Challenges and Opportunities to Personalize Therapy. Front Neurol 9:459
Hsiao, Hsi-Min; Fernandez, Ramiro; Tanaka, Satona et al. (2018) Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1?. J Clin Invest 128:2833-2847
Ntai, Ioanna; Fornelli, Luca; DeHart, Caroline J et al. (2018) Precise characterization of KRAS4b proteoforms in human colorectal cells and tumors reveals mutation/modification cross-talk. Proc Natl Acad Sci U S A 115:4140-4145
Brown, Jessica H; Das, Prativa; DiVito, Michael D et al. (2018) Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater 73:217-227
Malik, Neha; Iyamu, Iredia D; Scheidt, Karl A et al. (2018) Synthesis of a novel fused pyrrolodiazepine-based library with anti-cancer activity. Tetrahedron Lett 59:1513-1516
Wiwatpanit, Teerawat; Remis, Natalie N; Ahmad, Aisha et al. (2018) Codeficiency of Lysosomal Mucolipins 3 and 1 in Cochlear Hair Cells Diminishes Outer Hair Cell Longevity and Accelerates Age-Related Hearing Loss. J Neurosci 38:3177-3189
Ladomersky, Erik; Zhai, Lijie; Lenzen, Alicia et al. (2018) IDO1 Inhibition Synergizes with Radiation and PD-1 Blockade to Durably Increase Survival Against Advanced Glioblastoma. Clin Cancer Res 24:2559-2573
Wong, Yvette C; Ysselstein, Daniel; Krainc, Dimitri (2018) Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554:382-386

Showing the most recent 10 out of 1972 publications