The Mouse Histology and Phenotyping Laboratory (MHPL) provides the Northwestern University research community with histopathology assessment of murine tissues by trained pathologists and comprehensive histology services performed by expert histotechnologists. In addition, training is provided for investigators to learn to detect gross anomalies in rodents, to harvest tissue from various organ systems and to perform immunohistochemical and special histological stains on tissue sections generated by the MHPL. The MHPL was developed to fulfill a need by the investigative community to assist with the analysis of new murine models, to leverage the expertise of pathologists in the histopathological assessment of tissue anomalies and neoplasms, and to increase the likelihood of extracting meaningful phenotypic information to guide future investigations. Murine tissue has histological characteristics distinct from human tissue and therefore accurate interpretation requires microscopic examination by.pathologists with an understanding of disease pathobiology, rodent histopathology and murine development. Moreover, tissue isolation, processing, and sectioning often require the involvement of highly skilled histotechnologists, especially when embryonic lethal phenotypes or complex developmental abnormalities are to be studied. The MHPL is directed by an anatomic pathologist and neuropathologist with more than twenty years of experience in diagnosing human tumors and developmental abnormalities. He has equally extensive training in rodent adult and developmental pathobiology and histopathology. Other members ofthe MHPL staff include a second fulltime associate pathologist, three full-time ASCP certified histotechnologists, two part-time histotechnologists and two part-time technical/administrative assistants. Together, this team provides a broad range of technical and diagnostic services to investigators throughout the Northwestern University research enterprise in a high-volume and fast-paced environment. These comprehensive histopathology support services enhance the ability of our Cancer Center investigators to characterize viable and embryonic lethal mouse models and to develop and analyze new in vivo model systems to study cancer biology.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA060553-20
Application #
8761070
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
20
Fiscal Year
2014
Total Cost
$122,933
Indirect Cost
$43,919
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Bui, Triet M; Mascarenhas, Lorraine A; Sumagin, Ronen (2018) Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair. Tissue Barriers 6:e1431038
Ritzert, Jeremy T; Lathem, Wyndham W (2018) Depletion of Glucose Activates Catabolite Repression during Pneumonic Plague. J Bacteriol 200:
Forte, Eleonora; Swaminathan, Suchitra; Schroeder, Mark W et al. (2018) Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. MBio 9:
Park, Yun Ji; Kenney, Grace E; Schachner, Luis F et al. (2018) Repurposed HisC Aminotransferases Complete the Biosynthesis of Some Methanobactins. Biochemistry 57:3515-3523
Fong, Lam-Kiu; Wang, Ziwei; Schatz, George C et al. (2018) The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization. J Am Chem Soc 140:6226-6230
Mandelin 2nd, Arthur M; Homan, Philip J; Shaffer, Alexander M et al. (2018) Transcriptional Profiling of Synovial Macrophages Using Minimally Invasive Ultrasound-Guided Synovial Biopsies in Rheumatoid Arthritis. Arthritis Rheumatol 70:841-854
Suraneni, Praveen K; Corey, Seth J; Hession, Michael J et al. (2018) Dynamins 2 and 3 control the migration of human megakaryocytes by regulating CXCR4 surface expression and ITGB1 activity. Blood Adv 2:3540-3552
Yan, M; Lewis, P L; Shah, R N (2018) Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation. Biofabrication 10:035010
Edelbrock, Alexandra N; Àlvarez, Zaida; Simkin, Dina et al. (2018) Supramolecular Nanostructure Activates TrkB Receptor Signaling of Neuronal Cells by Mimicking Brain-Derived Neurotrophic Factor. Nano Lett 18:6237-6247
Fisher, Daniel W; Han, Ye; Lyman, Kyle A et al. (2018) HCN channels in the hippocampus regulate active coping behavior. J Neurochem 146:753-766

Showing the most recent 10 out of 1972 publications