The Northwestern University Transgenic and Targeted Mutagenesis Laboratory (TTML) is a shared resource designed to produce genetically engineered mice for research projects of investigators of the Robert H Lurie Comprehensive Cancer Center (RHLCCC), Feinberg School of Medicine (FSM), Evanston campus, and Lurie Children's Hospital of Chicago Research Center. The transgenic facility was initially founded at Northwestern University in 1989, as part of the Markey Program in Developmental Biology, to provide a resource for generating transgenic mice. Today, the facility has evolved into a well utilized laboratory that provides a broad range of services to NU investigators, including generation of transgenic mice, gene targeting of embryonic stem (ES) cells, generation of chimeric mice via ES cell microinjection into blastocysts, cryopreservation and recovery of mouse embryos/sperm, and rederivation of pathogen free mouse strains. In 2003, the facility was reorganized and expanded to include gene targeting services. Embryo cryopreservation and recovery, rederivation of mouse lines, and in vitro fertilization services were added in 2005. The embryo, and now sperm, cryopreservation and recovery services position NU and Cancer Center investigators to capitalize on emerging repositories of mutant mice generated around the world, most of which are stored as cryopreserved embryos. Innovative genome editing technologies have been introduced over the last 18 months. These technologies implore zinc finger nuclease (ZFN) and recombinase mediated cassette exchange (RMCE) mechanisms to create gene-specific modifications directly in the zygote via pronuclear microinjection. Cancer Center investigators save both monetary resources and time as these technologies eliminate the need for ES cell based gene targeting. The TTML provides the necessary infrastructure that allows most investigators access to transgenic technology that normally requires expensive microinjection equipment and highly skilled staff with expertise in microinjection, microsurgeries, embryo manipulation, animal husbandry, and ES cell culture. TTML staff provides consultation and guidance regarding transgenic and targeting vector design;appropriate screening strategies;DNA purification methods;breeding and analysis of transgenic founder and chimeric mice;and transgenic-related technologies. The oversight committee that governs the TTML meets at least twice a year and is comprised of a dynamic group of faculty with a wide range of transgenic-related expertise. They critically review facility data/progress and provide astute advice. Since the inclusion of the TTML as a resource within the Cancer Center in 1995, Cancer Center investigators have consistently been the primary group of NU investigators utilizing the TTML, emphasizing its pivotal role in the overall research mission of the RHLCCC.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA060553-20
Application #
8761073
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
20
Fiscal Year
2014
Total Cost
$136,675
Indirect Cost
$48,867
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Stack, Trevor; Vahabikashi, Amir; Johnson, Mark et al. (2018) Modulation of Schlemm's canal endothelial cell stiffness via latrunculin loaded block copolymer micelles. J Biomed Mater Res A 106:1771-1779
Blair, Kris M; Mears, Kevin S; Taylor, Jennifer A et al. (2018) The Helicobacter pylori cell shape promoting protein Csd5 interacts with the cell wall, MurF, and the bacterial cytoskeleton. Mol Microbiol 110:114-127
Karabin, Nicholas B; Allen, Sean; Kwon, Ha-Kyung et al. (2018) Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat Commun 9:624
Welch, Whitney A; Spring, Bonnie; Phillips, Siobhan M et al. (2018) Moderating Effects of Weather-Related Factors on a Physical Activity Intervention. Am J Prev Med 54:e83-e89
Kaplan, Nihal; Ventrella, Rosa; Peng, Han et al. (2018) EphA2/Ephrin-A1 Mediate Corneal Epithelial Cell Compartmentalization via ADAM10 Regulation of EGFR Signaling. Invest Ophthalmol Vis Sci 59:393-406
Kenig-Kozlovsky, Yael; Scott, Rizaldy P; Onay, Tuncer et al. (2018) Ascending Vasa Recta Are Angiopoietin/Tie2-Dependent Lymphatic-Like Vessels. J Am Soc Nephrol 29:1097-1107
Zhang, Angelica; Veesenmeyer, Jeffrey L; Hauser, Alan R (2018) Phosphatidylinositol 4,5-Bisphosphate-Dependent Oligomerization of the Pseudomonas aeruginosa Cytotoxin ExoU. Infect Immun 86:
Ting, See-Yeun; Bosch, Dustin E; Mangiameli, Sarah M et al. (2018) Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell 175:1380-1392.e14
Nahum-Shani, Inbal; Smith, Shawna N; Spring, Bonnie J et al. (2018) Just-in-Time Adaptive Interventions (JITAIs) in Mobile Health: Key Components and Design Principles for Ongoing Health Behavior Support. Ann Behav Med 52:446-462
Kang, Hong-Jun; Song, Ha Yong; Ahmed, Mohamed A et al. (2018) NQO1 regulates mitotic progression and response to mitotic stress through modulating SIRT2 activity. Free Radic Biol Med 126:358-371

Showing the most recent 10 out of 1972 publications