The Cancer Informatics Core is comprised of informatics faculty and staff who are focused on providing informatics services and necessary computational infrastructure for the diverse informatics needs of Cancer Center members in the Robert H. Lurie Comprehensive Cancer Center. The Core works closely with RHLCCC governance committees to promulgate standards, provide advice and guidance, optimize systems and minimize redundancy through continued integration of data, databases, applications, software and computational infrastructure that is necessary to support cancer translational research. Since the last competitive renewal, the Core has established a scalable high performance cyber-infrastructure equipped with >200 TB of tiered storage and a virtualized data center to meet the data and computational needs of Cancer Center members. The Core also provides access and training for Cancer Center members on the 7000 core Northwestern Quest cluster for projects requiring high performance computing. During the past five years, the Core has met its primary goals of providing the necessary computational infrastructure for managing clinical trials with the Clinical Research Office, storage for microarray and next generation sequencing. The core has provided the necessary oversight, project management, and software development expertise to deliver data management and reporting applications for prostate cancer and breast cancer repositories. The core has also worked closely with the RHLCCC neuro-oncology investigators to deliver innovative patient-facing intake and assessment applications that are coupled to clinical data available through the Enterprise Data Warehouse with molecular data coming from biospecimens, including gene expression, copy number, and methylation data. We have also provided sophisticated gene expression analysis, pathway enrichment analysis, and methylation data analysis including visualization methods for more than 70 cancer center members and 160 projects during the past five years. In addition to providing these genomic analysis services to our cancer center members, we have released the tools developed for these projects as open source bioconductor packages [lumi, GeneAnswers, ChlPpeakAnno, MassSpecWavelet). The core has also developed, in conjunction with the Northwestern University Biomedical Informatics Center (part ofthe Northwestern CTSA) a number of web-based clinical research software modules that have been released as open source tools (Patient Study Calendar, Registar, eNOTIS, Surveyor). In addition, the core has developed and released tools for scientific network analysis (LatticeGrid) and competition management (NUCATS Assist). The Core will continue to support and extend these activities. We anticipate that during the next five year there will be additional member-driven demand in the area of next generation sequencing, high performance computing, and FISMA compliant computing.

Public Health Relevance

The overall goal of the Cancer Informatics Core facility is to provide RHLCCC investigators with genomic analysis tools, data management services, and cyber-infrastructure to answer cancer research questions. To accelerate cancer research in the RHLCCC, the Cancer Informatics Core works closely with cancer investigators and RHLCCC cores including the Clinical Research Office, the Biostatistics Core Facility, Cell Imaging, Pathology Core, Outcomes Measure and Survey Core, and the Flow Cytometry Core.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA060553-21
Application #
8918440
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
2016-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
21
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Ogasawara, Noriko; Poposki, Julie A; Klingler, Aiko I et al. (2018) IL-10, TGF-?, and glucocorticoid prevent the production of type 2 cytokines in human group 2 innate lymphoid cells. J Allergy Clin Immunol 141:1147-1151.e8
Fisher, Oriana S; Kenney, Grace E; Ross, Matthew O et al. (2018) Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nat Commun 9:4276
Lin, Hsin-Pin; Oksuz, Idil; Svaren, John et al. (2018) Egr2-dependent microRNA-138 is dispensable for peripheral nerve myelination. Sci Rep 8:3817
Nguyen, Maria; Krainc, Dimitri (2018) LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson's disease. Proc Natl Acad Sci U S A 115:5576-5581
Ritzert, Jeremy T; Lathem, Wyndham W (2018) Depletion of Glucose Activates Catabolite Repression during Pneumonic Plague. J Bacteriol 200:
Bui, Triet M; Mascarenhas, Lorraine A; Sumagin, Ronen (2018) Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair. Tissue Barriers 6:e1431038
Park, Yun Ji; Kenney, Grace E; Schachner, Luis F et al. (2018) Repurposed HisC Aminotransferases Complete the Biosynthesis of Some Methanobactins. Biochemistry 57:3515-3523
Forte, Eleonora; Swaminathan, Suchitra; Schroeder, Mark W et al. (2018) Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. MBio 9:
Mandelin 2nd, Arthur M; Homan, Philip J; Shaffer, Alexander M et al. (2018) Transcriptional Profiling of Synovial Macrophages Using Minimally Invasive Ultrasound-Guided Synovial Biopsies in Rheumatoid Arthritis. Arthritis Rheumatol 70:841-854
Fong, Lam-Kiu; Wang, Ziwei; Schatz, George C et al. (2018) The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization. J Am Chem Soc 140:6226-6230

Showing the most recent 10 out of 1972 publications