The High Throughput Screening (HTS) and Chemical Synthesis (CS) Shared Resource provides state-ofthe- art capability for Vanderbilt-lngram Cancer Center (VICC) researchers to harness the power of HTS/CS to support target discovery, pathway mapping, chemical tool discovery, and exploratory preclinical drug discovery research. HTS/CS includes a chemical library of >170,0000 small molecules, advanced liquid handling, and a broad array of signal detecfion modalifies enabling researchers to address quesfions spanning from protein-protein interactions in purified cell-free systems to colony formation and morphology assays using automated imaging. The facility has the capability of addressing all commonly used opfical techniques (fluorescence, luminscense, kinefic imaging, high-content imaging, scinfillation proximity, refractive index spectroscopy (Corning Epic), automated electrophysiology, and very shortly in collaboration with Stephen Fesik, Ph.D. fragment-based NMR approaches). The complementary CS resource provides an ability to apply advanced chemical synthesis and medicinal chemistry methodologies including solution-phase parallel synthesis, microwave assisted catalysis, automated mass-directed purification, and both chiral synthesis and purificafion resources. HTS/CS employs a highly trained staff of HTS experts who work directly with Vanderbilt investigators to develop, implement, and interpret HTS. This team works hand-in-hand with the team in the CS facility to help investigators extract maximum value from the shared resource by providing a mechanism to use medicinal chemistry techniques to understand, improve, and ufilize HTS hits. David Weaver, Ph.D., directs the HTS component and Alex Waterson, Ph.D., directs the CS portion.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA068485-18
Application #
8733542
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
18
Fiscal Year
2014
Total Cost
$180,339
Indirect Cost
$89,303
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Pollins, Alonda C; Boyer, Richard B; Nussenbaum, Marlieke et al. (2018) Comparing Processed Nerve Allografts and Assessing Their Capacity to Retain and Release Nerve Growth Factor. Ann Plast Surg 81:198-202
Marks, Christian R; Shonesy, Brian C; Wang, Xiaohan et al. (2018) Activated CaMKII? Binds to the mGlu5 Metabotropic Glutamate Receptor and Modulates Calcium Mobilization. Mol Pharmacol 94:1352-1362
Singh, Kshipra; Coburn, Lori A; Asim, Mohammad et al. (2018) Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Res 78:4303-4315
Fensterheim, Benjamin A; Young, Jamey D; Luan, Liming et al. (2018) The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism. J Immunol 200:3777-3789
Coppola, Jennifer J; Disney, Anita A (2018) Most calbindin-immunoreactive neurons, but few calretinin-immunoreactive neurons, express the m1 acetylcholine receptor in the middle temporal visual area of the macaque monkey. Brain Behav 8:e01071
Hull, P C; Buchowski, M; Canedo, J R et al. (2018) Childhood obesity prevention cluster randomized trial for Hispanic families: outcomes of the healthy families study. Pediatr Obes 13:686-696
Dahlman, Kimberly Brown; Weinger, Matthew B; Lomis, Kimberly D et al. (2018) Integrating Foundational Sciences in a Clinical Context in the Post-Clerkship Curriculum. Med Sci Educ 28:145-154
Covington, Brett C; Spraggins, Jeffrey M; Ynigez-Gutierrez, Audrey E et al. (2018) Response of Hypogean Actinobacterial Genera Secondary Metabolism to Chemical and Biological Stimuli. Appl Environ Microbiol :
Hong, Jun; Maacha, Selma; Belkhiri, Abbes (2018) Transcriptional upregulation of c-MYC by AXL confers epirubicin resistance in esophageal adenocarcinoma. Mol Oncol 12:2191-2208
Bolus, W Reid; Peterson, Kristin R; Hubler, Merla J et al. (2018) Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab 8:86-95

Showing the most recent 10 out of 2462 publications