Flow Cytometry is an important analytical and cell purification tool in cancer and immunological research. Modern cancer analysis requires innovative procedures that include both imaging methods and non-imaging analysis, such as that provided by flow cytometry. Flow cytometry allows the isolation of pure cell populations comprising less than 0.01 % of a complex mixture. In addition, as an analytical tools it permits statistical analysis of cell populations and allows for more precise measurement of changes in protein presence and expression, DMA and cell cycle changes, cell function changes, apoptosis, intracellular protein expression, and gene transfection for example. Innovative methods that contribute to modern cancer research include gene expression detection with green fluorescent protein, isolation of transfected cells, isolation of stem cells, FRET (Fluorescence Resonance Energy Transfer), multi parameter cytometry, apoptotic effect of chemotherapy, multi-drug resistance evaluation, and minimal residual disease detection. The recently upgraded high-speed cell sorter, located in Cancer Institute space at the Portland Veterans Affairs NW Cancer Research Center, is capable of measuring 10 parameters at rates of up to 25,000 cells per second. The Flow Cytometry Shared Resource (FCSR) provides technical expertise, trained personnel, and technical services in flow cytometry to meet the needs of OHSU Cancer Institute members.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA069533-13
Application #
7885384
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
13
Fiscal Year
2009
Total Cost
$71,111
Indirect Cost
Name
Oregon Health and Science University
Department
Type
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Lane, Ryan S; Femel, Julia; Breazeale, Alec P et al. (2018) IFN?-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J Exp Med 215:3057-3074
Smith, Nicholas R; Swain, John R; Davies, Paige S et al. (2018) Monoclonal Antibodies Reveal Dynamic Plasticity Between Lgr5- and Bmi1-Expressing Intestinal Cell Populations. Cell Mol Gastroenterol Hepatol 6:79-96
Langer, E M; Kendsersky, N D; Daniel, C J et al. (2018) ZEB1-repressed microRNAs inhibit autocrine signaling that promotes vascular mimicry of breast cancer cells. Oncogene 37:1005-1019
Sorace, Anna G; Partridge, Savannah C; Li, Xia et al. (2018) Distinguishing benign and malignant breast tumors: preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the International Breast MR Consortium 6883 trial. J Med Imaging (Bellingham) 5:011019
Medler, Terry R; Murugan, Dhaarini; Horton, Wesley et al. (2018) Complement C5a Fosters Squamous Carcinogenesis and Limits T Cell Response to Chemotherapy. Cancer Cell 34:561-578.e6
Kelley, Katherine A; Wieghard, Nicole; Chin, Yuki et al. (2018) MiR-486-5p Downregulation Marks an Early Event in Colorectal Carcinogenesis. Dis Colon Rectum 61:1290-1296
Davare, Monika A; Henderson, Jacob J; Agarwal, Anupriya et al. (2018) Rare but Recurrent ROS1 Fusions Resulting From Chromosome 6q22 Microdeletions are Targetable Oncogenes in Glioma. Clin Cancer Res 24:6471-6482
Kurtz, Stephen E; Eide, Christopher A; Kaempf, Andy et al. (2018) Dual inhibition of JAK1/2 kinases and BCL2: a promising therapeutic strategy for acute myeloid leukemia. Leukemia 32:2025-2028
Sehrawat, Archana; Gao, Lina; Wang, Yuliang et al. (2018) LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A 115:E4179-E4188
Watson, Spencer S; Dane, Mark; Chin, Koei et al. (2018) Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Syst 6:329-342.e6

Showing the most recent 10 out of 277 publications