As Cancer research continues to become increasingly data driven, many investigative studies underway at Rutgers Cancer Institute of New Jersey (CINJ) rely upon analysis of multi-dimensional data sets, high- resolution imaging, next generation sequencing and other information intensive technologies. The Biomedical Informatics shared resource (Bioinformatics) addresses these challenges through the use of high-throughput instrumentation, advanced data management systems, machine-learning technologies, high-performance cloud computing environments and state-of-the-art supercomputing capabilities. Under the direction of David J. Foran, PhD, the overarching mission of Bioinformatics is to provide leading- edge data acquisition and analysis tools, computational informatics expertise, data analysis, and intensive training to foster advances in research and discovery in investigative oncology. Application of these activities to genomic data from patient samples is enhancing patient care and initiating and sustaining productive collaborations among CINJ investigators and throughout the clinical and basic research community. To optimize the support we provide to our basic, clinical and population research programs Bioinformatics is organized into the following sections: Computational Imaging; Clinical and Research Information Technology (IT); Chemical Informatics and Drug Discovery; and Bioinformatics and Systems Biology.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA072720-20
Application #
9632895
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-03-07
Budget End
2020-02-29
Support Year
20
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Rbhs -Cancer Institute of New Jersey
Department
Type
DUNS #
078728091
City
New Brunswick
State
NJ
Country
United States
Zip Code
08901
Warner, Wayne A; Lee, Tammy Y; Fang, Fang et al. (2018) The burden of prostate cancer in Trinidad and Tobago: one of the highest mortality rates in the world. Cancer Causes Control 29:685-697
Zhao, Yuhan; Wu, Lihua; Yue, Xuetian et al. (2018) A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models. Elife 7:
Deek, Matthew P; Kim, Sinae; Ahmed, Inaya et al. (2018) Prognostic Impact of Missed Chemotherapy Doses During Chemoradiation Therapy for Non-Small Cell Lung Cancer. Am J Clin Oncol 41:362-366
O'Malley, Denalee; Dewan, Asa A; Ohman-Strickland, Pamela A et al. (2018) Determinants of patient activation in a community sample of breast and prostate cancer survivors. Psychooncology 27:132-140
Park, Kihan; Chen, Wenjin; Chekmareva, Marina A et al. (2018) Electromechanical Coupling Factor of Breast Tissue as a Biomarker for Breast Cancer. IEEE Trans Biomed Eng 65:96-103
Gupta, Apar; Ohri, Nisha; Haffty, Bruce G (2018) Hypofractionated radiation treatment in the management of breast cancer. Expert Rev Anticancer Ther 18:793-803
Jang, Thomas L; Patel, Neal; Faiena, Izak et al. (2018) Comparative effectiveness of radical prostatectomy with adjuvant radiotherapy versus radiotherapy plus androgen deprivation therapy for men with advanced prostate cancer. Cancer 124:4010-4022
Herman, Joseph M; Jabbour, Salma K; Lin, Steven H et al. (2018) Smad4 Loss Correlates With Higher Rates of Local and Distant Failure in Pancreatic Adenocarcinoma Patients Receiving Adjuvant Chemoradiation. Pancreas 47:208-212
Patrizii, Michele; Bartucci, Monica; Pine, Sharon R et al. (2018) Utility of Glioblastoma Patient-Derived Orthotopic Xenografts in Drug Discovery and Personalized Therapy. Front Oncol 8:23
Zloza, Andrew (2018) Viruses, bacteria, and parasites - oh my! a resurgence of interest in microbial-based therapy for cancer. J Immunother Cancer 6:3

Showing the most recent 10 out of 775 publications